https://doi.org/10.1140/epjc/s10052-021-09395-z
Regular Article - Theoretical Physics
New class of exact solutions to Einstein–Maxwell-dilaton theory on four-dimensional Bianchi type IX geometry
Department of Physics and Engineering Physics, University of Saskatchewan, S7N 5E2, Saskatoon, SK, Canada
Received:
21
March
2021
Accepted:
29
June
2021
Published online:
6
July
2021
We construct new classes of cosmological solution to the five dimensional Einstein–Maxwell-dilaton theory, that are non-stationary and almost conformally regular everywhere. The base geometry for the solutions is the four-dimensional Bianchi type IX geometry. In the theory, the dilaton field is coupled to the electromagnetic field and the cosmological constant term, with two different coupling constants. We consider all possible solutions with different values of the coupling constants, where the cosmological constant takes any positive, negative or zero values. In the ansatzes for the metric, dilaton and electromagnetic fields, we consider dependence on time and two spatial directions. We also consider a special case of the Bianchi type IX geometry, in which the geometry reduces to that of Eguchi–Hanson type II geometry and find a more general solution to the theory.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3