https://doi.org/10.1140/epjc/s10052-021-09375-3
Regular Article - Experimental Physics
Spectroscopic analysis of the gaseous argon scintillation with a wavelength sensitive particle detector
1
CIEMAT, Division de Física de Particulas, Avda. Complutense, 40, Madrid, Spain
2
IGFAE, Campus Vida, Rúa Xosé María Suárez Núñez, s/n, Santiago de Compostela, Spain
a
r.santorelli@ciemat.es
b
edgar.sanchez@ciemat.es
Received:
2
January
2021
Accepted:
25
June
2021
Published online:
17
July
2021
We performed a time-resolved spectroscopic study of the VUV/UV scintillation of gaseous argon as a function of pressure and electric field, by means of a wavelength sensitive detector operated with different radioactive sources. Our work conveys new evidence of distinctive features of the argon light which are in contrast with the general assumption that, for particle detection purposes, the scintillation can be considered to be largely monochromatic at 128 nm (second continuum). The wavelength and time-resolved analysis of the photon emission reveal that the dominant component of the argon scintillation during the first tens of ns is in the range [160, 325] nm. This light is consistent with the third continuum emission from highly charged argon ions/molecules. This component of the scintillation is field-independent up to 25 V/cm/bar and shows a very mild dependence with pressure in the range [1, 16] bar. The dynamics of the second continuum emission is dominated by the excimer formation time, whose variation as a function of pressure has been measured. Additionally, the time and pressure-dependent features of electron-ion recombination, in the second continuum band, have been measured. This study opens new paths toward a novel particle identification technique based on the spectral information of the noble-elements scintillation light.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3