https://doi.org/10.1140/epjc/s10052-021-09360-w
Regular Article - Theoretical Physics
Frame covariant formalism for fermionic theories
1
Department of Physics and Astronomy, University of Manchester, M13 9PL, Manchester, UK
2
Dipartimento di Fisica, Universitá di Pisa, Pisa, Italy
a
kieran.finn@manchester.ac.uk
Received:
7
April
2021
Accepted:
21
June
2021
Published online:
2
July
2021
We present a frame- and reparametrisation-invariant formalism for quantum field theories that include fermionic degrees of freedom. We achieve this using methods of field-space covariance and the Vilkovisky–DeWitt (VDW) effective action. We explicitly construct a field-space supermanifold on which the quantum fields act as coordinates. We show how to define field-space tensors on this supermanifold from the classical action that are covariant under field reparametrisations. We then employ these tensors to equip the field-space supermanifold with a metric, thus solving a long-standing problem concerning the proper definition of a metric for fermionic theories. With the metric thus defined, we use well-established field-space techniques to extend the VDW effective action and express any fermionic theory in a frame- and field-reparametrisation-invariant manner.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3