https://doi.org/10.1140/epjc/s10052-021-09369-1
Regular Article - Theoretical Physics
Detection of gravitational waves by light perturbation
1
Department of Physics and Astronomy, Seoul National University, 08826, Seoul, Republic of Korea
2
National Institute for Mathematical Sciences, 34047, Daejeon, Republic of Korea
Received:
22
March
2021
Accepted:
22
June
2021
Published online:
30
June
2021
Light undergoes perturbation as gravitational waves pass by. This is shown by solving Maxwell’s equations in a spacetime with gravitational waves; a solution exhibits a perturbation due to gravitational waves. We determine the perturbation for a general case of both light and gravitational waves propagating in arbitrary directions. It is also shown that a perturbation of light due to gravitational waves leads to a delay of the photon transit time, which implies an equivalence between the perturbation analysis of Maxwell’s equations and the null geodesic analysis for photon propagation. We present an example of application of this principle with regard to the detection of gravitational waves via a pulsar timing array, wherein our perturbation analysis for the general case is employed to show how the detector response varies with the incident angle of a light pulse with respect to the detector.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3