https://doi.org/10.1140/epjc/s10052-021-09280-9
Regular Article - Theoretical Physics
Imprints of dark matter on black hole shadows using spherical accretions
1
Department of Physics, Dyal Singh College, University of Delhi, 110003, Delhi, India
2
Physics Department, State University of Tetovo, Ilinden Street nn, 1200, Tetovo, North Macedonia
Received:
25
January
2021
Accepted:
20
May
2021
Published online:
2
June
2021
We study the possibility of identifying dark matter in the galactic center from the physical properties of the electromagnetic radiation emitted from an optically-thin disk region around a static and spherically symmetric black hole. In particular, we consider two specific models for the optical-thin disk region: a gas at rest and a gas in a radial free fall. Due to the effect of dark matter on the spacetime geometry, we find that the dark matter can increase or decrease the intensity of the electromagnetic flux radiation depending on the dark matter model. To this end, we analyze two simple dark matter models having different mass functions , with a matter mass M, thickness along with a dark matter core radius surrounding the black hole. In addition to that, we explore the scenario of a perfect fluid dark matter surrounding the black hole. We show that in order to have significant effect of dark matter on the intensity of the electromagnetic flux radiation, a high energy density of dark matter near the black hole is needed. We also find that the surrounding dark matter distribution plays a key role on the shadow radius and the intensity of the electromagnetic flux radiation, respectively. Finally we have used the relation between the shadow radius and the quasinormal modes (QNMs) to compute the real part of QNM frequencies.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3