https://doi.org/10.1140/epjc/s10052-021-09256-9
Regular Article - Theoretical Physics
General method for including Stueckelberg fields
Physics Faculty, Tomsk State University, Lenin ave. 36, 634050, Tomsk, Russia
Received:
25
February
2021
Accepted:
7
April
2021
Published online:
29
May
2021
A systematic procedure is proposed for inclusion of Stueckelberg fields. The procedure begins with the involutive closure when the original Lagrangian equations are complemented by all the lower order consequences. The Stueckelberg field is introduced for every consequence included into the closure. The generators of the Stueckelberg gauge symmetry begin with the operators generating the closure of original system. These operators are not assumed to be a generators of gauge symmetry of any part of the original action, nor are they supposed to form an on shell integrable distribution. With the most general closure generators, the consistent gauge invariant theory is iteratively constructed, without obstructions at any stage. The Batalin–Vilkovisky form of inclusion of the Stueckelberg fields is worked out and the existence theorem for the Stueckelberg action is proven.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3