https://doi.org/10.1140/epjc/s10052-021-09251-0
Regular Article - Theoretical Physics
Charged throats in the Hořava–Lifshitz theory
Departamento de Física, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile
Received:
22
March
2021
Accepted:
16
May
2021
Published online:
24
May
2021
A spherically symmetric solution of the field equations of the Hořava–Lifshitz gravity–gauge vector interaction theory is obtained and analyzed. It describes a charged throat. The solution exists provided a restriction on the relation between the mass and charge is satisfied. The restriction reduces to the Reissner–Nordström one in the limit in which the coupling constants tend to the relativistic values of General Relativity. We introduce the correct charts to describe the solution across the entire manifold, including the throat connecting an asymptotic Minkowski space-time with a singular 3+1 dimensional manifold. The solution external to the throat on the asymptotically flat side tends to the Reissner–Nordström space-time at the limit when the coupling parameter, associated with the term in the low energy Hamiltonian that manifestly breaks the relativistic symmetry, tends to zero. Also, when the electric charge is taken to be zero the solution becomes the spherically symmetric and static solution of the Hořava–Lifshitz gravity.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3