https://doi.org/10.1140/epjc/s10052-021-09190-w
Regular Article - Theoretical Physics
Gravitational waves in neutrino plasma and NANOGrav signal
1
Department of Physics and Astrophysics, University of Delhi, 110 007, Delhi, India
2
School of Fundamental Physics and Mathematical Sciences, Hangzhou Institute for Advanced Study, UCAS, 310024, Hangzhou, China
a arunp77@gmail.com, arun_pandey@prl.iitgn.ac.in
Received:
17
March
2021
Accepted:
25
April
2021
Published online:
7
May
2021
The recent finding of the gravitational wave (GW) signal by the NANOGrav collaboration in the nHZ frequency range has opened up the door for the existence of stochastic GWs. In the present work, we have argued that in a hot dense neutrino asymmetric plasma, GWs could be generated due to the instability caused by the finite difference in the number densities of the different species of the neutrinos. The generated GWs have amplitude and frequency in the sensitivity range of the NANOGrav observation. We have shown that the GWs generated by this mechanism could be one of the possible explanations for the observed NANOGrav signal. We have also discussed generation of GWs in an inhomogeneous cosmological neutrino plasma, where GWs are generated when neutrinos enter a free streaming regime. We show that the generated GWs in an inhomogeneous neutrino plasma cannot explain the observed NANOGrav signal. We have also calculated the lower bound on magnetic fields’ strength using the NANOGrav signal and found that to explain the signal, the magnetic fields’ strength should have at least value G at an Mpc length scale.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3