https://doi.org/10.1140/epjc/s10052-021-09167-9
Regular Article - Theoretical Physics
On the photon-pseudoscalar particle mixing in media and external fields
School of Physics and Astronomy, Cardiff University, The Parade, CF24 3AA, Cardiff, UK
Received:
9
November
2020
Accepted:
21
April
2021
Published online:
4
May
2021
In this work, I study the mixing of photons with pseudoscalar particles and vice-versa in the presence of an external magnetic field and a pseudoscalar field. I solve exactly for the first time in the literature the equations of motion of the electromagnetic field coupled with a pseudoscalar field in the presence of a constant magnetic field with arbitrary direction with respect to the direction of propagation of the fields in vacuum. In addition, I also solve exactly the equations of motion in a magnetized plasma/gas for perpendicular propagation with respect to the external magnetic field. By finding exact solutions to the equations of motion, I find exact expressions for the transition efficiencies of photons into pseudoscalar particles in different situations. The expressions of the transition efficiencies generalize and correct those previously found in the literature by using approximate WKB methods on solving the equations of motion. In the case when the direction of propagation of fields with respect to the external magnetic field is not perpendicular, a longitudinal state of the electromagnetic field is generated even in a magnetized vacuum. The appearance of the longitudinal electric field state could be used for laboratory searches of pseudoscalar particles such as the axion and/or axion-like particles.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3