https://doi.org/10.1140/epjc/s10052-021-08960-w
Regular Article – Theoretical Physics
Axion monodromy inflation, trapping mechanisms and the swampland
1
Institute of Theoretical Physics, ETH Zürich, 8093, Zurich, Switzerland
2
Department of Physics, McGill University, H3A 2T8, Montreal, QC, Canada
Received:
2
November
2020
Accepted:
5
February
2021
Published online:
17
February
2021
We study the effects of particle production on the evolution of the inflaton field in an axion monodromy model with the goal of discovering in which situations the resulting dynamics will be consistent with the swampland constraints. In the presence of a modulated potential the evolving background field (solution of the inflaton homogeneous in space) induces the production of long wavelength inflaton fluctuation modes. However, this either has a negligible effect on the inflaton dynamics (if the field spacing between local minima of the modulated potential is large), or else it traps the inflaton in a local minimum and leads to a graceful exit problem. On the other hand, the production of moduli fields at enhanced symmetry points can lead to a realization of trapped inflation consistent with the swampland constraints, as long as the coupling between the inflaton and the moduli fields is sufficiently large.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3