https://doi.org/10.1140/epjc/s10052-021-08899-y
Letter
Dark matter models for the 511 keV galactic line predict keV electron recoils on Earth
1
DESY, Notkestraße 85, 22607, Hamburg, Germany
2
LPTHE, CNRS, Sorbonne Université, 4 Place Jussieu, 75252, Paris, France
Received:
28
August
2020
Accepted:
22
January
2021
Published online:
6
February
2021
We propose models of Dark Matter that account for the 511 keV photon emission from the Galactic Centre, compatibly with experimental constraints and theoretical consistency, and where the relic abundance is achieved via p-wave annihilations or, in inelastic models, via co-annihilations. Due to the Dark Matter component that is inevitably upscattered by the Sun, these models generically predict keV electron recoils at detectors on Earth, and could naturally explain the excess recently reported by the XENON1T collaboration. The very small number of free parameters make these ideas testable by detectors like XENONnT and Panda-X, by accelerators like NA64 and LDMX, and by cosmological surveys like the Simons observatory and CMB-S4. As a byproduct of our study, we recast NA64 limits on invisibly decaying dark photons to other particles.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3.