https://doi.org/10.1140/epjc/s10052-021-08879-2
Regular Article – Theoretical Physics
The variational method, backreactions, and the absorption probability in Wald type problems
Department of Natural and Mathematical Sciences, Özyeğin University, 34794, Istanbul, Turkey
Received:
16
July
2020
Accepted:
14
January
2021
Published online:
19
January
2021
We argue that the variational method in Wald type thought experiments, involves order of magnitude problems when one imposes the fact that is inherently a first order quantity itself. One observes that the contribution of the second order perturbations is actually of the fourth order. Therefore backreactions have to be explicitly calculated. Here, we re-consider the overspinning problem for Kerr–Newman black holes interacting with test fields. We calculate the backreaction effects due to the induced increase in the angular velocity of the event horizon, which brings a partial solution to the overspinning problem. To bring an ultimate solution, we argue that the absorption probability should be taken into account in Wald type problems where black holes interact with test fields. This fundamentally alters the course of the analysis of the thought experiments. Due to the fact that a small fraction of the challenging modes is absorbed by the black holes, overspinning is prevented for both nearly extremal and extremal cases. Some extreme cases are easily fixed by backreaction effects. The arguments do not apply to the generic overspinning by fermionic fields for which the absorption probability is positive definite.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3