https://doi.org/10.1140/epjc/s10052-020-08802-1
Regular Article – Theoretical Physics
Stability of charged thin-shell gravastars with quintessence
Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, 54590, Lahore, Pakistan
Received:
15
June
2020
Accepted:
20
December
2020
Published online:
19
January
2021
This paper develops a new solution of gravitational vacuum star in the background of charged Kiselev black holes as an exterior manifold. We explore physical features and stability of thin-shell gravastars with radial perturbation. The matter thin layer located at thin-shell greatly affects stable configuration of the developed structure. We assume three different choices of matter distribution such as barotropic, generalized Chaplygin gas and generalized phantomlike equation of state. The last two models depend on the shell radius, also known as variable equation of state. For barotropic model, the structure of thin-shell gravastar is mostly unstable while it shows stable configuration for such type of matter distribution with extraordinary quintessence parameter. The resulting gravastar structure indicates stable behavior for generalized Chaplygin gas but unstable for generalized phantomlike model. It is also found that proper length, entropy and energy within the shell show linear relation with thickness of the shell.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3