https://doi.org/10.1140/epjc/s10052-020-08493-8
Regular Article – Theoretical Physics
Lefschetz thimbles and quantum phases in zero-dimensional bosonic models
Department of Physical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, 140306, SAS Nagar, Punjab, India
b
anoshjoseph@iisermohali.ac.in
Received:
2
July
2020
Accepted:
24
September
2020
Published online:
7
October
2020
In this paper, by analyzing the underlyingLefschetz-thimble structure, we investigate quantum phases (or quantum critical points) in zero-dimensional scalar field theories with complex actions. Using first principles, we derive the thimble equations of these models for various values of the coupling parameters. In the thimble decomposition of complex path integrals, determination of the so-called intersection numbers appears as an important ingredient. In this paper, we obtain the analytic expressions for the combined intersection number of thimbles and anti-thimbles of these zero-dimensional theories. We also derive the conditional expressions involving relations among the coupling parameters of the model, that would help us predict quantum phase transitions in these systems. We see that the underlying thimble structure undergoes a drastic change when the system passes through such a phase transition.
© The Author(s) 2020
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3