https://doi.org/10.1140/epjc/s10052-020-8055-y
Regular Article - Experimental Physics
Direct measurement of the muonic content of extensive air showers between
and
eV at the Pierre Auger Observatory
1
Centro Atómico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), San Carlos de Bariloche, Argentina
2
Centro de Investigaciones en Láseres y Aplicaciones, CITEDEF and CONICET, Villa Martelli, Argentina
3
Departamento de Física and Departamento de Ciencias de la Atmósfera y los Océanos, FCEyN, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina
4
IFLP, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
5
Instituto de Astronomía y Física del Espacio (IAFE CONICET-UBA), Buenos Aires, Argentina
6
Instituto de Física de Rosario (IFIR) – CONICET/U.N.R. and Facultad de Ciencias Bioquímicas y Farmacéuticas U.N.R., Rosario, Argentina
7
Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM) and Universidad Tecnológica Nacional – Facultad Regional Mendoza (CONICET/CNEA), Mendoza, Argentina
8
Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET UNSAM), Buenos Aires, Argentina
9
Observatorio Pierre Auger, Malargüe, Argentina
10
Observatorio Pierre Auger and Comisión Nacional de Energía Atómica, Malargüe, Argentina
11
Universidad Tecnológica Nacional – Facultad Regional Buenos Aires, Buenos Aires, Argentina
12
University of Adelaide, Adelaide, SA, Australia
13
Université Libre de Bruxelles (ULB), Brussels, Belgium
14
Vrije Universiteit Brussels, Brussels, Belgium
15
Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, RJ, Brazil
16
Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, Nova Friburgo, Brazil
17
Universidade de São Paulo, Escola de Engenharia de Lorena, Lorena, SP, Brazil
18
Universidade de São Paulo, Instituto de Física de São Carlos, São Carlos, SP, Brazil
19
Universidade de São Paulo, Instituto de Física, São Paulo, SP, Brazil
20
Universidade Estadual de Campinas, IFGW, Campinas, SP, Brazil
21
Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
22
Universidade Federal do ABC, Santo André, SP, Brazil
23
Universidade Federal do Paraná, Setor Palotina, Palotina, Brazil
24
Universidade Federal do Rio de Janeiro, Instituto de Física, Rio de Janeiro, RJ, Brazil
25
Universidade Federal do Rio de Janeiro (UFRJ), Observatório do Valongo, Rio de Janeiro, RJ, Brazil
26
Universidade Federal Fluminense, EEIMVR, Volta Redonda, RJ, Brazil
27
Universidad de Medellín, Medellín, Colombia
28
Universidad Industrial de Santander, Bucaramanga, Colombia
29
Charles University, Faculty of Mathematics and Physics, Institute of Particle and Nuclear Physics, Prague, Czech Republic
30
Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
31
Palacky University, RCPTM, Olomouc, Czech Republic
32
Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
33
Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Universités Paris 6 et Paris 7 CNRS-IN2P3, Paris, France
34
Univ. Grenoble Alpes, CNRS, Grenoble Institute of Engineering Univ. Grenoble Alpes, LPSC-IN2P3, 38000, Grenoble, France
35
Department of Physics, Bergische Universität Wuppertal, Wuppertal, Germany
36
Karlsruhe Institute of Technology, Institute for Experimental Particle Physics (ETP), Karlsruhe, Germany
37
Karlsruhe Institute of Technology, Institut für Kernphysik, Karlsruhe, Germany
38
Karlsruhe Institute of Technology, Institut für Prozessdatenverarbeitung und Elektronik, Karlsruhe, Germany
39
RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
40
Universität Hamburg, II. Institut für Theoretische Physik, Hamburg, Germany
41
Universität Siegen, Fachbereich 7 Physik – Experimentelle Teilchenphysik, Siegen, Germany
42
Gran Sasso Science Institute, L’Aquila, Italy
43
INFN Laboratori Nazionali del Gran Sasso, Assergi, L’Aquila, Italy
44
INFN, Sezione di Catania, Catania, Italy
45
INFN, Sezione di Lecce, Lecce, Italy
46
INFN, Sezione di Milano, Milano, Italy
47
INFN, Sezione di Napoli, Napoli, Italy
48
INFN, Sezione di Roma “Tor Vergata”, Rome, Italy
49
INFN, Sezione di Torino, Torino, Italy
50
Osservatorio Astrofisico di Torino (INAF), Torino, Italy
51
Politecnico di Milano, Dipartimento di Scienze e Tecnologie Aerospaziali, Milano, Italy
52
Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento, Lecce, Italy
53
Dipartimento di Scienze Fisiche e Chimiche, Università dell’Aquila, L’Aquila, Italy
54
Dipartimento di Fisica e Astronomia, Università di Catania, Catania, Italy
55
Dipartimento di Fisica, Università di Milano, Milano, Italy
56
Dipartimento di Fisica “Ettore Pancini”, Università di Napoli “Federico II”, Napoli, Italy
57
Dipartimento di Fisica, Università di Roma “Tor Vergata”, Rome, Italy
58
Dipartimento di Fisica, Università Torino, Torino, Italy
59
Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
60
Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Mexico, D.F., Mexico
61
Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas del Instituto Politécnico Nacional (UPIITA-IPN), Mexico, D.F., Mexico
62
Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Chiapas, Mexico
63
Universidad Nacional Autónoma de México, Mexico, D.F., Mexico
64
Institute of Nuclear Physics PAN, Krakow, Poland
65
Faculty of Astrophysics, University of Łódź, Łódź, Poland
66
Faculty of High-Energy Astrophysics, University of Łódź, Łódź, Poland
67
Laboratório de Instrumentação e Física Experimental de Partículas – LIP and Instituto Superior Técnico – IST, Universidade de Lisboa – UL, Lisbon, Portugal
68
“Horia Hulubei” National Institute for Physics and Nuclear Engineering, Bucharest-Magurele, Romania
69
Institute of Space Science, Bucharest-Magurele, Romania
70
University Politehnica of Bucharest, Bucharest, Romania
71
Center for Astrophysics and Cosmology (CAC), University of Nova Gorica, Nova Gorica, Slovenia
72
Experimental Particle Physics Department, J. Stefan Institute, Ljubljana, Slovenia
73
Universidad de Granada and C.A.F.P.E., Granada, Spain
74
Instituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
75
IMAPP, Radboud University Nijmegen, Nijmegen, The Netherlands
76
KVI – Center for Advanced Radiation Technology, University of Groningen, Groningen, The Netherlands
77
Nationaal Instituut voor Kernfysica en Hoge Energie Fysica (NIKHEF), Science Park, Amsterdam, The Netherlands
78
Stichting Astronomisch Onderzoek in Nederland (ASTRON), Dwingeloo, The Netherlands
79
Universiteit van Amsterdam, Faculty of Science, Amsterdam, The Netherlands
80
Case Western Reserve University, Cleveland, OH, USA
81
Colorado School of Mines, Golden, CO, USA
82
Department of Physics and Astronomy, Lehman College, City University of New York, Bronx, NY, USA
83
Louisiana State University, Baton Rouge, LA, USA
84
Michigan Technological University, Houghton, MI, USA
85
New York University, New York, NY, USA
86
Pennsylvania State University, University Park, PA, USA
87
University of Chicago, Enrico Fermi Institute, Chicago, IL, USA
88
University of Delaware, Department of Physics and Astronomy, Bartol Research Institute, Newark, DE, USA
89
The Pierre Auger Observatory, Av. San Martín Norte 306, Malargüe, Mendoza, 5613, Argentina
* e-mail: auger_spokespersons@fnal.gov
Received:
13
February
2020
Accepted:
18
May
2020
Published online:
18
August
2020
The hybrid design of the Pierre Auger Observatory allows for the measurement of the properties of extensive air showers initiated by ultra-high energy cosmic rays with unprecedented precision. By using an array of prototype underground muon detectors, we have performed the first direct measurement, by the Auger Collaboration, of the muon content of air showers between and
eV. We have studied the energy evolution of the attenuation-corrected muon density, and compared it to predictions from air shower simulations. The observed densities are found to be larger than those predicted by models. We quantify this discrepancy by combining the measurements from the muon detector with those from the Auger fluorescence detector at
and
. We find that, for the models to explain the data, an increase in the muon density of
for EPOS-LHC, and of
for QGSJetII-04, is respectively needed.
© The Author(s), 2020