https://doi.org/10.1140/epjc/s10052-020-7717-0
Regular Article - Theoretical Physics
New application of the Killing vector field formalism: modified periodic potential and two-level profiles of the axionic dark matter distribution
Department of General Relativity and Gravitation, Institute of Physics, Kazan Federal University, Kremlevskaya str. 16a, 420008, Kazan, Russia
Received:
3
January
2020
Accepted:
4
February
2020
Published online:
18
February
2020
We consider the structure of halos of the axionic dark matter, which surround massive relativistic objects with static spherically symmetric gravitational field and monopole-type magneto-electric fields. We work with the model of pseudoscalar field with the extended periodic potential, which depends on additional arguments proportional to the moduli of the Killing vectors; in our approach they play the roles of model guiding functions. The covariant model of the axion field with this modified potential is equipped with the extended formalism of the Killing vector fields, which is established in analogy with the formalism of the Einstein–Aether theory, based on the introduction of a unit timelike dynamic vector field. We study the equilibrium state of the axion field, for which the extended potential and its derivative vanish, and illustrate the established formalism by the analysis of two-level axionic dark matter profiles, for which the stage delimiters relate to the critical values of the modulus of the timelike Killing vector field.
© The Author(s) 2020
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3