https://doi.org/10.1140/epjc/s10052-018-5622-6
Regular Article - Theoretical Physics
Conserved charges of minimal massive gravity coupled to scalar field
Department of Science, University of Kurdistan, Sanandaj, Iran
* e-mail: hamed.adami@yahoo.com
Received:
10
October
2017
Accepted:
7
February
2018
Published online:
17
February
2018
Recently, the theory of topologically massive gravity non-minimally coupled to a scalar field has been proposed, which comes from the Lorentz–Chern–Simons theory (JHEP 06, 113, 2015), a torsion-free theory. We extend this theory by adding an extra term which makes the torsion to be non-zero. We show that the BTZ spacetime is a particular solution to this theory in the case where the scalar field is constant. The quasi-local conserved charge is defined by the concept of the generalized off-shell ADT current. Also a general formula is found for the entropy of the stationary black hole solution in context of the considered theory. The obtained formulas are applied to the BTZ black hole solution in order to obtain the energy, the angular momentum and the entropy of this solution. The central extension term, the central charges and the eigenvalues of the Virasoro algebra generators for the BTZ black hole solution are thus obtained. The energy and the angular momentum of the BTZ black hole using the eigenvalues of the Virasoro algebra generators are calculated. Also, using the Cardy formula, the entropy of the BTZ black hole is found. It is found that the results obtained in two different ways exactly match, just as expected.
© The Author(s), 2018