https://doi.org/10.1140/epjc/s10052-017-5343-2
Regular Article - Experimental Physics
Development of
-containing scintillating bolometers for a high-sensitivity neutrinoless double-beta decay search
1
IRFU, CEA, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
2
Univ Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, 69622, Villeurbanne, France
3
National Research Centre Kurchatov Institute, Institute of Theoretical and Experimental Physics, 117218, Moscow, Russia
4
Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
5
V.S. Sobolev Institute of Geology and Mineralogy of the Siberian Branch of the RAS, 630090, Novosibirsk, Russia
6
Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 2, 00185, Rome, Italy
7
INFN, Sezione di Roma, P.le Aldo Moro 2, 00185, Rome, Italy
8
CNRS-Néel, 38042, Grenoble Cedex 9, France
9
CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, 91405, Orsay, France
10
Karlsruhe Institute of Technology, Institut für Prozessdatenverarbeitung und Elektronik, 76021, Karlsruhe, Germany
11
Institute for Nuclear Research, 03028, Kyiv, Ukraine
12
Karlsruhe Institute of Technology, Institut für Experimentelle Teilchenphysik, 76128, Karlsruhe, Germany
13
Laboratory of Nuclear Problems, JINR, 141980, Dubna, Moscow Region, Russia
14
Dipartimento di Fisica, Università di Milano Bicocca, 20126, Milan, Italy
15
INFN, Sezione di Milano Bicocca, 20126, Milan, Italy
16
IRAMIS, CEA, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
17
IAS, CNRS, Université Paris-Sud, 91405, Orsay, France
18
Orphée, CEA, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
19
Dipartimento di Fisica, Università di Genova, 16146, Genoa, Italy
20
INFN Sezione di Genova, 16146, Genoa, Italy
21
Karlsruhe Institute of Technology, Institut für Kernphysik, 76021, Karlsruhe, Germany
22
Kirchhoff Institute for Physics, Heidelberg University, 69120, Heidelberg, Germany
23
DISAT, Università dell’Insubria, 22100, Como, Italy
24
Nikolaev Institute of Inorganic Chemistry, 630090, Novosibirsk, Russia
25
Laboratoire de Photonique et de Nanostructures, CNRS, Route de Nozay, 91460, Marcoussis, France
26
Department of Physics, University of Oxford, Oxford, OX1 3RH, UK
27
Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield, S3 7RH, UK
28
INFN, Laboratori Nazionali del Gran Sasso, 67100, Assergi, AQ, Italy
29
CEA, LIST, Laboratoire National Henri Becquerel (LNE-LNHB), CEA-Saclay, 91191, Gif-sur-Yvette Cedex, France
30
INFN, Gran Sasso Science Institute, 67100, L’Aquila, Italy
31
INFN, Laboratori Nazionali di Frascati, Frascati, 00044, Rome, Italy
32
Department of Physics and Astronomy, University of South Carolina, Columbia, SC, 29208, USA
33
ICMCB, CNRS, Université de Bordeaux, 33608, Pessac Cedex, France
34
Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba, Japan
35
Max-Planck-Institut für Physik, Munich, Germany
36
SNOLAB, Lively, ON, Canada
* e-mail: denys.poda@csnsm.in2p3.fr
Received:
7
April
2017
Accepted:
2
November
2017
Published online:
21
November
2017
This paper reports on the development of a technology involving -enriched scintillating bolometers, compatible with the goals of CUPID, a proposed next-generation bolometric experiment to search for neutrinoless double-beta decay. Large mass (
), high optical quality, radiopure
-containing zinc and lithium molybdate crystals have been produced and used to develop high performance single detector modules based on 0.2–0.4 kg scintillating bolometers. In particular, the energy resolution of the lithium molybdate detectors near the Q-value of the double-beta transition of
(3034 keV) is 4–6 keV FWHM. The rejection of the
-induced dominant background above 2.6 MeV is better than
. Less than
activity of
and
in the crystals is ensured by boule recrystallization. The potential of
-enriched scintillating bolometers to perform high sensitivity double-beta decay searches has been demonstrated with only
exposure: the two neutrino double-beta decay half-life of
has been measured with the up-to-date highest accuracy as
= [6.90 ± 0.15(stat.) ± 0.37(syst.)]
. Both crystallization and detector technologies favor lithium molybdate, which has been selected for the ongoing construction of the CUPID-0/Mo demonstrator, containing several kg of
.
Present address: 0000 0001 2151 536X, grid.26999.3d, Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba, Japan
© The Author(s), 2017