https://doi.org/10.1140/epjc/s10052-011-1662-x
Regular Article - Theoretical Physics
On ‘light’ fermions and proton stability in ‘big divisor’ D3/D7 large volume compactifications
Department of Physics, Indian Institute of Technology, Roorkee, 247 667, Uttarakhand, India
* e-mail: aalokfph@iitr.ernet.in
Received:
26
February
2011
Revised:
4
May
2011
Published online:
1
June
2011
Building on our earlier work (Misra and Shukla, Nucl. Phys. B 827:112, 2010; Phys. Lett. B 685:347–352, 2010), we show the possibility of generating “light” fermion mass scales of MeV–GeV range (possibly related to the first two generations of quarks/leptons) as well as eV (possibly related to first two generations of neutrinos) in type IIB string theory compactified on Swiss-Cheese orientifolds in the presence of a mobile space-time filling D3-brane restricted to (in principle) stacks of fluxed D7-branes wrapping the “big” divisor Σ B . This part of the paper is an expanded version of the latter half of Sect. 3 of a published short invited review (Misra, Mod. Phys. Lett. A 26:1, 2011) written by one of the authors [AM]. Further, we also show that there are no SUSY GUT-type dimension-five operators corresponding to proton decay, and we estimate the proton lifetime from a SUSY GUT-type four-fermion dimension-six operator to be 1061 years. Based on GLSM calculations in (Misra and Shukla, Nucl. Phys. B 827:112, 2010) for obtaining the geometric Kähler potential for the “big divisor,” using further the Donaldson’s algorithm, we also briefly discuss in the first of the two appendices the metric for the Swiss-Cheese Calabi–Yau used, which we obtain and which becomes Ricci flat in the large-volume limit.
© Springer-Verlag / Società Italiana di Fisica, 2011