https://doi.org/10.1140/epjc/s10052-006-0046-0
Experimental Physics
Diffractive deep-inelastic scattering with a leading proton at HERA
1
I. Physikalisches Institut, RWTH, Aachen, Germany
2
School of Physics and Astronomy, University of Birmingham, Birmingham, UK
3
Inter-University Institute for High Energies ULB-VUB, Brussels, Belgium
4
Universiteit Antwerpen, Antwerpen, Belgium
5
Rutherford Appleton Laboratory, Chilton, Didcot, UK
6
Institute for Nuclear Physics, Cracow, Poland
7
Institut für Physik, Universität Dortmund, Dortmund, Germany
8
Joint Institute for Nuclear Research, Dubna, Russia
9
CEA, DSM/DAPNIA, CE-Saclay, Gif-sur-Yvette, France
10
DESY, Hamburg, Germany
11
Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
12
Max-Planck-Institut für Kernphysik, Heidelberg, Germany
13
Physikalisches Institut, Universität Heidelberg, Heidelberg, Germany
14
Kirchhoff-Institut für Physik, Universität Heidelberg, Heidelberg, Germany
15
Institut für Experimentelle und Angewandte Physik, Universität Kiel, Kiel, Germany
16
Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovak Republic
17
Department of Physics, University of Lancaster, Lancaster, UK
18
Department of Physics, University of Liverpool, Liverpool, UK
19
Queen Mary and Westfield College, London, UK
20
Physics Department, University of Lund, Lund, Sweden
21
Physics Department, University of Manchester, Manchester, UK
22
CPPM, CNRS/IN2P3 – Univ. Mediterranee, Marseille, France
23
Departamento de Fisica Aplicada, CINVESTAV, Merida, Yucatan, Mexico
24
Departamento de Fisica, CINVESTAV, Merida, Yucatan, Mexico
25
Institute for Theoretical and Experimental Physics, Moscow, Russia
26
Lebedev Physical Institute, Moscow, Russia
27
Max-Planck-Institut für Physik, München, Germany
28
LAL, Université de Paris-Sud 11, IN2P3-CNRS, Orsay, France
29
LLR, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
30
LPNHE, Universités Paris VI and VII, IN2P3-CNRS, Paris, France
31
Faculty of Science, University of Montenegro, Podgorica, Serbia and Montenegro
32
Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
33
Faculty of Mathematics and Physics, Charles University, Praha, Czech Republic
34
Dipartimento di Fisica, Università di Roma Tre and INFN Roma 3, Roma, Italy
35
Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
36
Paul Scherrer Institut, Villigen, Switzerland
37
Fachbereich C, Universität Wuppertal, Wuppertal, Germany
38
Yerevan Physics Institute, Yerevan, Armenia
39
DESY, Zeuthen, Germany
40
Institut für Teilchenphysik, ETH, Zürich, Switzerland
41
Physik-Institut, Universität Zürich, Zürich, Switzerland
42
Physics Department, National Technical University, Zografou Campus, 15773, Athens, Greece
43
Rechenzentrum, Universität Wuppertal, Wuppertal, Germany
44
University of P.J. Šafárik, Košice, Slovak Republic
45
CERN, Geneva, Switzerland
46
Max-Planck-Institut für Physik, München, Germany
47
Comenius University, Bratislava, Slovak Republic
* e-mail: eperez@hep.saclay.cea.fr
Received:
2
June
2006
Revised:
21
July
2006
Published online:
24
October
2006
The cross section for the diffractive deep-inelastic scattering process ep→eXp is measured, with the leading final state proton detected in the H1 Forward Proton Spectrometer. The data analysed cover the range xIP<0.1 in fractional proton longitudinal momentum loss, 0.08<|t|<0.5 GeV-2 in squared four-momentum transfer at the proton vertex, 2<Q2<50 GeV2 in photon virtuality and 0.004<β=x/xIP<1, where x is the Bjorken scaling variable. For , the differential cross section has a dependence of approximately dσ/dt∝e6t, independently of xIP, β and Q2 within uncertainties. The cross section is also measured triple differentially in xIP, β and Q2. The xIP dependence is interpreted in terms of an effective pomeron trajectory with intercept αIP(0)=1.114±0.018(stat.)±0.012(syst.)+0.040 -0.020(model) and a sub-leading exchange. The data are in good agreement with an H1 measurement for which the event selection is based on a large gap in the rapidity distribution of the final state hadrons, after accounting for proton dissociation contributions in the latter. Within uncertainties, the dependence of the cross section on x and Q2 can thus be factorised from the dependences on all studied variables which characterise the proton vertex, for both the pomeron and the sub-leading exchange.
© Springer-Verlag Berlin Heidelberg, 2006