https://doi.org/10.1140/epjc/s2006-02515-9
Theoretical Physics
Schwinger action principle via linear quantum canonical transformations
1
Département de Physique, Faculté des Sciences, Université Badji Mokhtar-Annaba, Annaba, Algeria
2
Laboratoire de Physique Théorique, Département de Physique, Faculté des Sciences, Université de Jijel, BP 98, Ouled Aissa, 18000, Algeria
3
Laboratoire de Mathématiques, Informatique et Applications, Université de Haute Alsace, Mulhouse, France
* e-mail: boudjeda@caramail.com
Received:
21
October
2005
Revised:
29
December
2005
Published online:
31
March
2006
We have applied the Schwinger action principle to general one-dimensional (1D), time-dependent quadratic systems via linear quantum canonical transformations, which allowed us to simplify the problems to be solved by this method. We show that while using a suitable linear canonical transformation, we can considerably simplify the evaluation of the propagator of the studied system to that for a free particle. The efficiency and exactness of this method is verified in the case of the simple harmonic oscillator. This technique enables us to evaluate easily and immediately the propagator in some particular cases such as the damped harmonic oscillator, the harmonic oscillator with a time-dependent frequency, and the harmonic oscillator with time-dependent mass and frequency, and in this way the propagator of the forced damped harmonic oscillator is easily calculated without any approach.
© Springer-Verlag, 2006