https://doi.org/10.1140/epjc/s2005-02460-1
Experimental Physics
Supersymmetry parameter analysis: SPA convention and project
1
Departamento de Fisica and CFTP, Instituto Superior Tecnico, Lisbon, Portugal
2
Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
3
DAMTP, University of Cambridge, Cambridge, UK
4
Department of Physics, Texas A&M University, College Station, TX, USA
5
Department of Physics, Florida State University, Tallahassee, FL, USA
6
Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, USA
7
High Energy Physics Division, Argonne National Laboratory, Argonne, IL, USA
8
Department of Physics, University of Wisconsin, Madison, WI, USA
9
Lawrence Berkeley National Laboratory, Berkeley, CA, USA
10
Institut für Theoretische Physik, Universität Wien, Wien, Austria
11
Stanford Linear Accelerator Center, Stanford, CA, USA
12
Laboratoire de Physique Theorique, Annecy-le-Vieux, France
13
Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
14
Royal Holloway University of London, Egham, Surrey, UK
15
Skobeltsyn Institute of Nuclear Physics, MSU, Moscow, Russia
16
Fermi National Accelerator Laboratory, Batavia, IL, USA
17
Department of Physics, Chonbuk National University, Chonju, Korea
18
PH Department, CERN, Geneva, Switzerland
19
Physikalisches Institut, Universität Freiburg, Freiburg, Germany
20
Physics Department, Universidad Catolica de Chile, Santiago, Chile
21
LAL, Université de Paris-Sud, IN2P3-CNRS, Orsay, France
22
University of Delhi, Delhi, India
23
Institut für Hochenergiephysik, Österreichische Akademie der Wissenschaften, Wien, Austria
24
Instituto de Física, UNAM, México, Mexico
25
Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Würzburg, Germany
26
Institut für Theoretische Physik, Universität Zürich, Zürich, Switzerland
27
Max-Planck-Institut für Physik, München, Germany
28
Centre for High Energy Physics, Indian Institute of Science, Bangalore, India
29
Department of Theoretical Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
30
Facultat de Física, Universitat de Barcelona, Barcelona, Spain
31
Department of Physics, University of California, Davis, CA, USA
32
Institute of Theoretical Physics, University of Tokushima, Tokushima, Japan
33
Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA, USA
34
Theory Division, KEK, Tsukuba, Japan
35
Department of Modern Physics, University of Science and Technology of China, Hefei, China
36
Center for High Energy Physics and Institute of Modern Physics, Tsinghua University, Beijing, China
37
High Energy Physics, Uppsala University, Uppsala, Sweden
38
Department of Physics, Tokyo Gakugei University, Tokyo, Japan
39
Instituto de Física Corpuscular, CSIC, Valéncia, Spain
40
Department of Physics, National Taiwan University, Taipei, Taiwan
41
Department of Mathematical Sciences, University of Liverpool, Liverpool, UK
42
Institute of Theoretical Physics, Warsaw University, Warsaw, Poland
43
MCTP, University of Michigan, Ann Arbor, MI, USA
44
School of Physics, Seoul National University, Seoul, Korea
45
Department of Physics, Yonsei University, Seoul, Korea
46
School of Physics and Astronomy, University of Southampton, Southampton, UK
47
Physikalisches Institut der Universität Bonn, Bonn, Germany
48
Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble I, Grenoble, France
49
LPTA, Université Montpellier II, CNRS-IN2P3, Montpellier, France
50
Institut für Theoretische Physik, RWTH Aachen, Aachen, Germany
51
Laboratoire de Physique des Particules, Annecy-le-Vieux, France
52
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
53
Department of Physics, Carleton University, Ottawa, ON, Canada
54
I. Physikalisches Institut der RWTH Aachen, Aachen, Germany
55
Department of Physics, University of Florida, Gainesville, FL, USA
56
Department of Physics and Astronomy, University of Glasgow, Glasgow, UK
57
ICEPP, University of Tokyo, Tokyo, Japan
58
IPN Université Lyon, IN2P3-CNRS, Lyon, France
59
Harish-Chandra Research Institute, Allahabad, India
60
University of Colorado, Boulder, CO, USA
61
YITP, Kyoto Universty, Kyoto, Japan
62
Deutsches Elektronen-Synchrotron DESY, Zeuthen, Germany
63
William I. Fine Theoretical Physics Institute, University of Minnesota, Minneapolis, MN, USA
64
INFN, Sezione di Pavia, Pavia, Italy
65
Department of Physics and Astronomy, University of Rochester, Rochester, NY, USA
66
IPPP, University of Durham, Durham, UK
67
Tata Institute of Fundamental Research, Mumbai, India
68
Paul Scherrer Institut, Villigen, Switzerland
69
Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
70
Department of Physics, Chung-Ang University, Seoul, Korea
71
Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
72
Enrico Fermi Institute, University of Chicago, Chicago, IL, USA
73
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
74
Department of Physics, Tohoku University, Sendai, Japan
75
ITP, School of Physics, Peking University, Beijing, China
Received:
8
December
2005
Published online:
9
February
2006
High-precision analyses of supersymmetry parameters aim at reconstructing the fundamental supersymmetric theory and its breaking mechanism. A well defined theoretical framework is needed when higher-order corrections are included. We propose such a scheme, Supersymmetry Parameter Analysis SPA, based on a consistent set of conventions and input parameters. A repository for computer programs is provided which connect parameters in different schemes and relate the Lagrangian parameters to physical observables at LHC and high energy e + e - linear collider experiments, i.e., masses, mixings, decay widths and production cross sections for supersymmetric particles. In addition, programs for calculating high-precision low energy observables, the density of cold dark matter (CDM) in the universe as well as the cross sections for CDM search experiments are included. The SPA scheme still requires extended efforts on both the theoretical and experimental side before data can be evaluated in the future at the level of the desired precision. We take here an initial step of testing the SPA scheme by applying the techniques involved to a specific supersymmetry reference point.
© Springer-Verlag, 2006