2022 Impact factor 4.4
Particles and Fields
Eur. Phys. J. C 11, 217-238
DOI 10.1007/s100529900181

Experimental properties of gluon
and quark jets from a point source

The OPAL Collaboration

G.Abbiendi2 - et al.

2 Dipartimento di Fisica dell' Università di Bologna and INFN, I-40126 Bologna, Italy

Received: 24 February 1999 / Published online: 8 September 1999

Gluon jets are identified in hadronic Z0decays as all the particles in a hemisphere opposite to a hemisphere containing two tagged quark jets. Gluon jets defined in this manner are equivalent to gluon jets produced from a color singlet point source and thus correspond to the definition employed for most theoretical calculations. In a separate stage of the analysis, we select quark jets in a manner to correspond to calculations, as the particles in hemispheres of flavor tagged light quark (uds) events. We present the distributions of rapidity, scaled energy, the logarithm of the momentum, and transverse momentum with respect to the jet axes, for charged particles in these gluon and quark jets. We also examine the charged particle multiplicity distributions of the jets in restricted intervals of rapidity. For soft particles at large pT, we observe the charged particle multiplicity ratio of gluon to quark jets to be $2.29\pm0.09\,{\mathrm{(stat.)}}
\pm0.15\,{\mathrm{(syst.)}}$, in agreement with the prediction that this ratio should approximately equal the ratio of QCD color factors, C A/C F$\,$=$\,$2.25. The intervals used to define soft particles and large pT for this result, p$\,<\,$4 GeV/cand 0.8$\,<\,$ pT$\,<\,$3.0 GeV/c, are motivated by the predictions of the Herwig Monte Carlo multihadronic event generator. Additionally, our gluon jet data allow a sensitive test of the phenomenon of non-leading QCD terms known as color reconnection. We test the model of color reconnection implemented in the Ariadne Monte Carlo multihadronic event generator and find it to be disfavored by our data.

Copyright Springer-Verlag