DOI 10.1007/s100529801003
Convergent perturbation theory
for a q-deformed anharmonic oscillator
R. Dick1, A. Pollok-Narayanan1,2 - H. Steinacker1 - J. Wess1,2
1 Sektion Physik der Ludwig-Maximilians-Universität,
Theresienstr. 37, D-80333 München, Germany
2 Max-Planck-Institut für Physik,
Föhringer Ring 6, D-80805 München, Germany
Received: 6 August 1998 / Published online: 16 September 1998
Abstract
A q-deformed anharmonic oscillator is defined
within the framework of q-deformed quantum mechanics.
It is shown that
the Rayleigh-Schrödinger perturbation series for the bounded
spectrum
converges to exact eigenstates and eigenvalues, for q close to 1.
The radius of convergence becomes
zero in the undeformed limit.
Copyright Springer-Verlag