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Abstract. We report on two effects observed in experiments with captive disclination loops on polymeric
fibers immersed in nematics and submitted to electric and/or magnetic fields. We show that the magnetic
field oblique to a fiber with axial or helicoidal anchoring on its surface induces translation of disclination
loops. Fields orthogonal to fibers with helicoidal anchoring make disclination loops rotate around the field
direction. In the linear regime of this last chirogyral effect, the angle of rotation is proportional to the helix
wave vector and its sense unveils the chirality of the helix. We propose a model explaining the origin and
all features of these two effects.

1 Introduction

1.1 Free disclination loops in bulk nematics

Disclination lines are linear topological defects character-
istic of the director field n in nematic liquid crystals. Let
us remind that the name “nematic” coined by George
Friedel [1] stems from the Greek word υημα (thread) and
refers to these defects, which, when observed in a micro-
scope, appear as thin threads. Because of their topological
nature disclinations never terminate in bulk but are al-
ways either spanned between solid surfaces or form closed
loops.

Due to their tension T (energy per unit length), discli-
nation loops immersed in bulk nematics have the tendency
to shrink and finally to collapse. As an example we show in
fig. 1 a thick layer (large flat droplet) of the nematic 5CB
spread on a glass slide treated for homeotropic anchoring.
Disclination loops 1, 2 and 3 have been generated by a
gentle stirring of the nematic with a pipette tip. The se-
ries of four pictures shows that all three disclination loops
shrink and end (or will end) to collapse. Let us emphasize
that the collapse of these loops is traceless which means
that their topological charge is null.

1.2 Free disclination loops in thin homeotropic samples

This natural tendency of disclination loops to shrink in
bulk nematics can be hindered or even inverted by elastic
interactions with surfaces.

a e-mail: pawel.pieranski@u-psud.fr

Fig. 1. Shrinking disclination loops in a thick layer of the
nematic 5CB spread on a glass plate with homeotropic bound-
ary conditions. The upper surface of the nematic layer is free.
Disclination loops 1, 2 and 3 generated by a gentle stirring of
the droplet with a pipette tip are shrinking from a to d and
finally collapse. View in a microscope in non-polarized light.

Let us consider first the second case of disclination
loops growing in spite of their tension. This phenomenon,
illustrated in fig. 2, is well known to experimentalist
preparing thin homeotropic samples such as the one in
fig. 3a. The cell containing the nematic is made of two
glass plates, the surfaces of which are treated for the
homeotropic anchoring and which are separated and glued
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Fig. 2. Disclination loops observed during preparation of a
homeotropic sample of 5CB. a,a′) a homeotropic (H) domain
surrounded by the dowser (D) texture is surrounded by a discli-
nation loop (dl) drawn with red line; b–f) growth of H-in-D
domains driven by the gain in the surface elastic energy; f) a
dowser-in-homeotropic domain before its collapse. Pictures a–f
were taken at intervals of 15 s.

together by spacers of typical thickness d < 100μm. Due
to the Poiseuille flow during filling of this cell with the
nematic, the initial texture is not uniformly homeotropic
as expected but contains initially small homeotropic do-
mains, such as H in fig. 2a, surrounded by the texture
labeled D in fig. 2a [2–5].

The label D stands for “dowser” because, as shown
in fig. 2a′, in this texture the director rotates by π be-
tween the two limit plates and the director fields lines
have the shape of a Y-shaped dowser rod. Moreover, this
texture called also quasi-planar [2–4] or “planar” [5] has
been shown recently to be very sensitive to perturbations
such as magnetic fields or thickness gradients [6].

For topological reasons, the homeotropic and dowser
textures in fig. 2a′ must be separated by disclinations.
Therefore, all homeotropic-in-dowser (H-in-D) domains in
fig. 2a must be surrounded by disclination loops. One of
these loops is represented as the red line in fig. 2a.

In spite of their tension, disclination loops surround-
ing the H-in-D domains are growing when they are large
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Fig. 3. The principle of first experiments with captive disclina-
tions threaded on a HPC fiber inserted in a homeotropic sam-
ple of the nematic liquid crystal EN18: a) General view of the
sample. Nematic liquid crystal (NLC) is hold by capillarity be-
tween two glass slides separated by spacers and equipped with
ITO electrodes treated for homeotropic anchoring. Observation
are made from the z direction by means of a video microscope.
The magnetic field B is orientable as shown. b) Detailed view
of a captive disclination levitating at height h above the fiber
surface.

enough. One arrives at this conclusion by comparing the
gain in the elastic energy integrated on the surface of a H-
in-D domain of radius R, ΔFel ≈ −(π2K/d)πRΔR, with
the cost of elongation of the disclination ΔFdis = T2πΔR.
The total change in energy ΔFel +ΔFdis is negative when
the radius R is larger than

Rc =
2
π2

T

K
d. (1)

A more detailed calculation made in ref. [6] leads to the
conclusion that Rc ≈ 2d. The thickness of the sample in
fig. 2 being d = 0.1mm, the critical radius Rc = 0.2mm
is smaller than the radius R = 0.5mm of the homeotropic
domain H, so that it grows as shown in figs. 2a–f. The
growth of H-in-D domains leads to their coalescence and
finally to the formation of dowser-in-homeotropic (D-in-
H) domains (see the domain pointed by an arrow in fig. 2f)
which obviously must be surrounded by disclination loops
too. Due to the sign change in the surface elastic energy
ΔFel = π2(K/d)RΔR, such a D-in-H disclination loop
should collapse unless it is threaded on a fiber with a pla-
nar axial anchoring inserted in the homeotropic sample as
shown in fig. 3a.

Let us remind that the collapse of disclination loops in
nematics is known since long time to be hindered by three-
dimensional inclusions. The so-called Saturn ring sur-
rounding a spherical inclusion with homeotropic bound-
ary conditions [7–9] is the first known realization of a cap-
tive disclination loop. Captive disclination loops of more
complex shapes and topologies are also known to occur in
so-called rafts of colloidal particles [10]. Here we focus on
disclination loops threaded on fibers.
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Fig. 4. The principle of the chirogyral effect. A fiber, with
a planar helicoidal anchoring characterized by the angle α, is
inserted in a homeotropic nematic sample. Disclination loops
captive on the fiber are tilted around the z axis and make the
angle η with the xy plane orthogonal to the fiber.

1.3 Captive disclination loops, the chirogyral effect

First observations of disclination loops captive on fibers
were made in experiments with nematic [11] and
cholesteric droplets [12] threaded on HPC fibers with
planar anchoring. When the anchoring at the nematic
(cholesteric)/air is homeotropic, each droplet must con-
tain, for topological reasons, a defect with topological
charge N = 1: a disclination loop equivalent to a radial
hedgehog.

Captive disclination loops were also observed on glass
fibers with homeotropic anchoring immersed in planar ne-
matic samples [13,14]. In this geometry, disclination loops
were generated in a controlled manner by the Kibble-
Zurek mechanism during quenching from the isotropic into
the nematic phase.

Recently, captive disclination loops were created and
studied using HPC and nylon fibers with a planar anchor-
ing immersed in homeotropic nematic samples [15]. In the
case when the planar anchoring on the fiber surface was
helicoidal, due to the chirality of the polymer (HPC) or to
the mechanical torsion of the fiber, the so-called chirogy-
ral effect was observed (see fig. 4): the captive disclination
loops are tilted with respect to the fiber axis by the angle
η which is proportional in the first approximation to the
helix angle α

η = Cg(D/d)α. (2)

The chirogyral coefficient Cg(D/d) occurring in this for-
mula is a function of the ratio D/d between the fiber di-
ameter D and the sample thickness d. In these first ex-
periments, for symmetry reasons, disclination loops were
rotating around the axis z parallel to the homeotropic an-
choring on the sample surfaces.

Let us stress that the chirogyral effect was discovered
previously in experiments with nematic droplets threaded
on helicoidally shaped fibers obtained by electrospinning
where disclination loops were tilted with respect to the
average axis of fibers [16].

1.4 Aim of the present work

The aim of the present work is to study the behavior of
captive disclination loops in electric and magnetic fields.
In particular, we will show that in nematics with positive
dielectric and magnetic anisotropies the chirogyral effect
is enhanced by the application of fields. This allows to
detect the chirality of fibers even when it is small.

We will show that in strong enough fields, when the
magnetic coherence length ξ is much shorter than the sam-
ple thickness, the elastic interaction of loops with limit
plates becomes negligible. As a result, the rotation of the
disclination loops driven by the chirogyral effect occurs
around the direction B⊥ given by the magnetic field B
the orientation of which can be changed arbitrarily (see
fig. 3). Moreover, in the limit ξ � D the analytical model
of the chirogyral effect becomes very simple.

2 Preliminary experiments

2.1 Generation of captive disclination loops by
electrohydrodynamic turbulence

In the experiment illustrated by the series of eight pic-
tures in fig. 5, a fiber of diameter D = 28μm, drawn
by hand from an anisotropic 63% HPC-in-water solution,
has been inserted in a homeotropic sample of thickness
d = 100μm through one of its two free edges (see fig. 3a).
Initially (fig. 5a) this sample contained one disclination
loop threaded on the fiber. A 100Hz, 50V, AC voltage
applied subsequently to this EN18 sample with negative
dielectric anisotropy drove the electrohydrodynamic tur-
bulence which stretched progressively the initial disclina-
tion loop and created the strongly light scattering area
labelled DSM2, the size of which is growing with time [17]
as shown in figs. 5b and c. After switching the excitation
off, due to the elastic relaxation, the density of disclina-
tion (length/unit volume) is rapidly falling down and a
tangle of individual disclinations can be distinguished in
fig. 5d. In figs. 5f only three loops are left. Their evolution
in figs. 5g and h shows that the one labeled “cdl” is cap-
tive and while the other two, “fdl1” and “fdl2”, are free
and can collapse.

The outcome of this first experiment is that the topol-
ogy is a robust feature of the director field. Nevertheless,
when a vigorous hydrodynamic turbulence is applied for a
longer period, new captive disclinations can be created.
This is shown in the series of seven pictures in fig. 6
where the number of captive disclinations increases from 1
(fig. 6b) to 13 (fig. 6h) by the generation of six pairs of cap-
tive disclinations. The mechanism of generation of a new
pair of captive disclinations from one, unraveled by ob-
servations at high magnifications, is represented schemat-
ically in fig. 7. It can be decomposed in four stages:

1) Stretching of the captive disclination by the electrohy-
drodynamic turbulence (see fig. 7a,b).

2) Tearing out a free disclination loop from the stretched
captive disclination (see fig. 7b,c).
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Fig. 5. Free and captive disclination loops in a homoetropic
sample of the nematic EN18. a,a′) one captive disclination loop
(cdl); b,c) stretching of the initial disclination loop by electro-
hydrodynamic turbulence; d–h) relaxation of disclination loops
created by turbulence; all loops but one collapse.

3) Stretching of the free disclination loop and its and
winding around the fiber (see fig. 7c,d).

4) Splitting of the stretched free disclination into a pair
of two captive ones (see fig. 7d–f).

Fig. 6. Generation of captive disclination loops by the electro-
hydrodynamic turbulence: a) one disclination loop captive on a
HPC fiber inserted in a homeotropic cell of the nematic EN18;
b) stretching of the initial captive disclination loop leads to
formation of the strongly light scattering domain DSM2 con-
taining a finite density of disclinations; c) growth of the DSM2
domain; d–g) elastic relaxation after switching the AC field
off unveils the existence of six new pairs of disclination loops
generated by the turbulent flow.

2.2 Generation of a solitary captive disclination loop

In the method described above, the number and posi-
tions of captive disclination loops are random. The second
setup (see fig. 8), tailored for the study of the chirogyral
effect, allows to work with a solitary disclination loop,
the position of which in the nematic sample is well con-
trolled.

In this second setup the two glass plates are fixed on
independent supports in a manner that the thickness d of
the sample can be controlled (without spacers) with accu-
racy of 10μm. The nematic liquid crystal is hold by cap-
illarity between the overlapping parts of the glass plates.
The sample —NLC + glass plates— is fixed on another
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Fig. 7. Generation a new pair of disclination loops by the
turbulent flow: a-b) stretching of a captive disclination loop
and its winding around the fiber; b,c) collision of two section
of the stretched captive disclination loop and recombination
into one captive and one free disclinations; d) stretching of
the free disclination loop and its winding around the fiber;
d–f) collision of two section of the stretched free disclination
loop and recombination into a pair of two captive disclinations.

xyz translation stage so that it can be moved as a whole
with respect to the nylon (or HPC) fiber the two ends
of which are fixed on collinear axes of stepping motors.
Thanks to these stepping motors, this second setup al-
lows to control the mechanical torsion of the fiber in situ
and by this means to change the pitch of the helicoidal
anchoring. At the beginning of the experiment the fiber
is located outside of the sample and a small droplet of
the nematic liquid crystal is deposited on it (see fig. 8a).
As mentioned above, for topological reasons the droplet
contains a solitary disclination loop threaded on the fiber.
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Fig. 8. The principle of the experimental setup tailored for ex-
periments with captive disclinations threaded on a nylon fiber:
a) the captive disclination loop is first contained in a small
droplet deposited on a nylon fiber which is separated from
the sample maintained by capillarity between partially over-
lapping glass plates; b) by an adequate translation the sample
is then shifted on the fiber; c) view of the sample from the z
direction.

Subsequently the nematic sample (NLC + glass plates) is
shifted on the fiber in a manner that the disclination is
positioned in the sample center. Figure 8c shows a view of
such a sample from the z direction. Let us stress that this
sample contains in fact two disclination loops: the cap-
tive one introduced with the droplet and the pre-existing
peripheral disclination loop located in the vicinity of the
NLC/air meniscus surrounding the sample [6]. This sec-
ond disclination loop is free. In thin enough samples this
peripheral disclination does not collapse for reasons dis-
cussed already in sect. 1.2.
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Fig. 9. Distorsion of the director field around two adjacent captive disclinations on a fiber with planar axial anchoring: a) texture
in the absence of fields; b) texture rotated by π/2 due to application of an electric field E in z direction and of a magnetic field
B rotated slowly from z to −x direction.

2.3 Captive disclination loops on HPC fibers

The texture of the director field around two adjacent cap-
tive disclination loops is shown in fig. 9. It is compatible
with the planar axial anchoring on the fiber surface and
with the homeotropic anchoring on surfaces of the nematic
cell. As we will see further, it explains all features of the
chirogyral effect observed in experiments. Before that, it
is instructive to show that this texture can be unveiled di-
rectly by electrohydrodynamic instabilities in the presence
of a magnetic field.

In this experiment, made with the nematic EN18 and
with the setup shown in fig. 3, a 1 kHz AC voltage is
applied to electrodes. As EN18 has a negative dielectric
anisotropy, the electric field E favors orientations of the
director orthogonal to it. Simultaneously, a magnetic field
B of 0.05T is applied to the sample and its direction is
slowly rotated around the y axis from the vertical direc-
tion (B//z) to the horizontal one (B// − x). As a result,
the texture shown in fig. 9 rotates as a whole around the
y axis and its aspect in a microscope is shown in fig. 10a.

Subsequently a 100 Hz voltage is applied to electrodes.
When its amplitude becomes larger than the threshold
Vc = 9V of electrohydrodynamic instabilities in the con-
ductive regime [18], convection rolls orthogonal to the lo-
cal horizontal orientation of the director field appear, as
shown in fig. 10b. In this picture, the dashed lines orthog-
onal to the direction of convection rolls are therefore those
of the director field n.

Clearly, as expected, this pattern is obtained from the
one in fig. 9 by rotation around the y axis in clockwise
direction. When the magnetic field is rotated from the z
direction by π/2 in counterclockwise direction, the pattern
of convection rolls is changed as shown in fig. 11.

Results of these experiments are important for the
forthcoming discussion of the symmetry aspects of the chi-
rogyral effect.

3 Experiments with action of fields on
disclination loops

3.1 Tilt of disclination loops on HPC fibers

HPC fibers were drawn by hand from 65-70% HPC/water
mixtures in cholesteric phase. In practice, the texture of
the sample from which fibers were drawn did not matter
because fibers, 10 to 40μm in diameter, obtained by this
method were always optically uniaxial. One could think
therefore that HPC macromolecules are aligned and the
cholesteric helix is unwound during the elongational flow
which results in very high stretching ratios [19]. In such
a case, the surface of HPC fibers would produce the axial
planar anchoring (a//y in fig. 24).

On the basis of symmetry arguments, we expected that
disclination loops threaded on our hand-drawn HPC fibers
should be orthogonal to their axis y. The series of six



Eur. Phys. J. E (2017) 40: 28 Page 7 of 14

B 

x 

P 
A 

y 

a 

b 

E 

Fig. 10. Distorsion of the director field around two adjacent
captive disclinations on a HPC fiber unveiled by electrohydro-
dynamic instabilities in the presence of a magnetic field B (see
fig. 9): a) V < Vc; b) V > Vc (nematic EN18 with a negative
dielectric anisotropy; B = 0.05 T).
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Fig. 11. Electrohydrodynamic instabilities in the presence of
a magnetic field B rotated from the z direction by π/2 in clock-
wise and anticlockwise directions (nematic EN18 with a nega-
tive dielectric anisotropy, B = 0.05 T).

images shown in fig. 12 proves that this is not the case. At
first sight, in the first image labeled “0.00V” the tilt of the
disclination loop is difficult to perceive. However, upon the
action of the electric field the tilt of the disclination loop
grows considerably. Simultaneously, the loop, seen from
the direction z of the electric field, changes its shape from
a straight one to an S-like. In the image labeled “13.5V”
an oblique line connecting the left and right extremities
of the loop makes the angle η with the y axis orthogonal
to the fiber. This angle is plotted versus the applied AC
voltage VAC in fig. 13.

Fig. 12. Views of a disclination loop on a HPC fiber immersed
in 5CB and submitted to an electric field generated by an AC
voltage (1 kHz) applied to the ITO electrodes. The diameter of
the fiber is 40 μm.
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Fig. 13. Plot of the tilt angle η versus the AC voltage cor-
responding to the disclination loop on a HPC fiber shown in
fig. 12.

The best polynomial fit of the η(VAC) dependence
given by

η ≈ 3.8
(
1 + 0.44VAC + 0.013V 2

AC + . . .
)

(3)

leads to the following conclusions:

1) The disclination loop is tilted in the absence of the
field.

2) The tilt angle grows initially linearly with the applied
electric field E = V/d.

The main conclusion of this first experiment is that, in
spite of their uniaxial optical aspect, the HPC filaments
drawn by hand produce a helicoidal anchoring on their
surface.
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Fig. 14. Chirogyral effect of a disclination loop on a 300 μm
nylon fiber immersed in 5CB: a) without electric field, the he-
lix angle is 0, 7 and 14◦; b) with an electric field generated
by an AC voltage (1 kHz) applied to the ITO electrodes. The
diameter of the fiber is 300 μm and its helix angle is α = 6◦.
The fiber is located in the middle of a 5CB sample of thickness
d = 500 μm.
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Fig. 15. Plots of the tilt angle η versus the AC voltage cor-
responding to the disclination loops on nylon fibers shown in
figs. 14 and 16.

What is the chirality of the helix, left or right? (by
the left chirality of the helicoidal anchoring we mean the
one shown in figs. 4 and 25). With the aim to answer this

question, we have submitted the fiber with the disclina-
tion loop on it to positive and negative torsions (by the
positive torsion we mean the one shown in fig. 8). Plots
in fig. 13 show that, for a given AC voltage, the negative
torsion increases the tilt angle (plot labeled “negative tor-
sion”) while the positive torsion decreases it. When it is
large enough, it changes the surface anchoring from the
helicoidal planar to the planar axial and cancels the chir-
ogyral effect.

Finally we can say that the anchoring on the drawn-
by-hand HPC fibers is planar helicoidal and its chirality
is left. We will resume this discussion in sect. 5.

3.2 Tilt of captive loops on nylon wires in electric field

With the aim to confirm the sensitivity of disclination
loops to the helicity of fibers, another series of experi-
ments was made with a nylon fiber (a fishing wire). Using
such fibers with the diameter D of 200 and 300μm, much
larger than the one of HPC fibers, has the advantage to in-
crease precision of measurements of the tilt angle. Another
advantage of the nylon fiber is that its torsion, introduced
by means of the setup shown in fig. 8, can be changed
arbitrarily and measured accurately in situ.

0.5 V 1.1 V 

2.1 V 3.2 V 

4.3 V 5.4 V 

6.5 V 7.5 V 

η

8.6 V 9.7 V 

Fig. 16. Views of a disclination loop on a nylon fiber immersed
in 5CB and submitted to an electric field generated by an AC
voltage (1 kHz) applied to the ITO electrodes. The diameter of
the fiber is 200 μm and its helix angle α = 16.7◦.
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First of all, we have seen, as expected, that disclination
loops on a non-twisted nylon fiber are perpendicular to it
because the polyamide macromolecules are not chiral.

Experiments with twisted nylon fibers submitted to
electric fields are illustrated in fig. 14b and 16. In the first
experiment (fig. 14b), the torsion angle α = 6.7◦ is very
small so that tilt angles η are small too. In spite of that,
thanks to the large diameter D = 300μm of the fiber the
optical resolution of the disclination loop is better than in
fig. 12 and the tilt angle can be measured with a better
accuracy. Results η(V ) plotted in fig. 15 show a linear
dependence on VAC for VAC > 2V . We will see in sect. 5
that such a linear dependence η ∼ VAC is expected for
thick fibers.

In the second experiment made with a nylon fiber of
diameter D = 200μm, the angle of the torsion α = 16.7◦
is larger so that the tilt angles are larger too. Moreover, for
VAC > 5V the disclination loop takes an S-like shape. In
such a case a straight line is drawn between extremities of
the loop and the angle η is measured as shown in the image
labeled “7.5V”. Once again, the results η(VAC) plotted in
fig. 15 show a linear dependence on VAC for VAC > 2V .

3.3 Tilt of captive loops on nylon wires in magnetic
field

Experiments on the chirogyral effect with disclination
loops on twisted nylon fibers submitted to a magnetic field
are illustrated in figs. 17, 18, and 19 in which the magnetic

Fig. 17. Chirogyral effect in a vertical magnetic field: a) per-
spective view of the setup; b) view of the sample from z direc-
tion.

Fig. 18. Chirogyral effect in a horizontal magnetic field:
a) perspective view of the setup; b) view of the sample from z
direction.

Fig. 19. Views of three adjacent disclination loops on a twisted
nylon fiber immersed in 5CB and submitted to an oblique mag-
netic field. The diameter of the fiber is 200 μm. The torsion
of the fiber increases from a to c. Stripes visible on the fiber
surface allow to measure directly the helix angle α defined in
fig. 4.

field is respectively vertical (parallel to the z axis) hori-
zontal (parallel to the x axis) and oblique (parallel to the
zx plane and making the angle of θB ≈ 60◦ with the z
axis).

The aspect of the disclination loop tilted by the ver-
tical magnetic field in fig. 17b is the same as in the case
of the electric field discussed above. The horizontal field



Page 10 of 14 Eur. Phys. J. E (2017) 40: 28

-5 
-5 
0 

5 

10 

15 

20 

25 

30 

35 

40 

5 0 10 15 

B = 0 T 

B ≈ 0.
05

 T 

B 
≈ 

0.1
 T

 

20 25 30 
α  (°) 

η  
(°

) 

Fig. 20. Plot of the tilt angle η versus the helix angle cor-
responding to the disclination loops on twisted nylon fibers
shown in figs. 17 (triangular marker), fig. 18 (circular mark-
ers) and fig. 14a (square markers).

makes the disclination loop rotate around the x axis so
that its aspect in fig. 18b is elliptical. Finally, the action
of an oblique field is illustrated by the series of three pho-
tographs in fig. 19. We see here three adjacent disclination
loops which appear as oblique ellipses. In this case, the tilt
angle η of the chirogyral effect is determined from a simple
geometrical construction defined in fig. 19c.

From these all three aspects (line, ellipse, oblique el-
lipse) of disclination loops we can infer that the discli-
nation loops rotate around the direction of the magnetic
field. In the theoretical section we will see that this should
be the case when the magnetic coherence length ξ is much
shorter than the sample thickness d. Actually, in fig. 17b
the coherence length ξ ≈ 35μm is 5.6 times smaller than
the fiber diameter of 200μm which is inserted in a sample
of thickness d ≈ 500μm.

In the experiment of fig. 19, the magnetic field B is
tilted in the xz plane and makes with the z axis the angle
φB = −60◦(θB = 0). Its intensity B is also kept con-
stant but the torsion of the nylon fiber is varied. The cor-
responding helix angle α can be measured on images in
fig. 19. Clearly, for B ≈ 0.05T, the tilt angle η grows with
the torsion of the fiber.

Results of this experiment, plotted with circular mark-
ers in fig. 20, correspond well to a linear fit

η = Cα, (4)

with C(0.05T) = 1.3. In the same fig. 20, square markers
represent measurements of η and α made without fields
(see the three pictures in fig. 14a). The corresponding chi-
rogyral coefficient is C(0T) = 0.34. Finally, in the ex-
periment with the vertical field (see fig. 17) of intensity
B ≈ 0.1T the chirogyral coefficient is C(0.1T) = 2.6.
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c 
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Fig. 21. Translation of disclination loops on the nylon fiber
induced by a magnetic field oblique with respect to the fiber
axis z. The angle θB defined in fig. 3 is ≈ 30◦. Images a to
f have been taken at intervals of 100 s. The two loops on the
right meet and coalesce into one loop which collapses.

3.4 Translation of disclination loops induced by an
oblique field

When the magnetic field B is oblique with respect to the
fiber axis y, it drives a translation of disclination loops.
This is illustrated by the series of six pictures shown in
fig. 21. The velocity of motion is about 0.4μm/s. Adjacent
loops move in opposite directions. As a result, the two
loops on the right converge, meet and coalesce into one
loop. Being located outside the fiber this loop coalesces.

3.5 Behavior of charged captive disclination loops

Let us discuss now the chirogyral effect in the case of a
charged captive disclination loop which can be obtained,
for example, by fusion of a neutral disclination loop with
a monopole as shown in fig. 22.

These two defects (that exist on their own in fig. 22a)
stem from the texture shown previously in fig. 8c: the cap-
tive disclination loop persists while the monopole is cre-
ated by the collapse of the peripheral disclination when
the aspect ratio between the sample thickness d and the
radius of the peripheral disclination R is increased about a
critical value given by eq. (1). Upon a subsequent decrease
of the sample thickness to its initial value, the monopole
and the dowser texture around it persist in spite of their
metastability. The series of four pictures a–c in fig. 22
shows that the monopole, which can be considered as
a minimal charged disclination loop, is attracted toward
the neutral disclination loop and by their coalescence a
charged captive disclination loop is obtained (see fig. 22d).
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Fig. 22. Chirogyral effect of a charged disclination loop:
a–d) generation of a charged disclination loop by fusion of a
neutral disclination loop (dl) with a monopole (m); e) texture
around the charged disclination loop; f) deformation of the
charged loop due to the chirogyral effect. (200 μm nylon fiber
immersed in MBBA).

The texture surrounding this captive charged discli-
nation loop is depicted in fig. 22e. It is symmetrical with
respect to the mirror symmetry in the xy plane. For this
reason, the sign of the chirogyral effect is opposite in the
upper (z > 0) and lower (z < 0) halves of the disclination
loop so that, when observed along the z axis (parallel to
the magnetic field), the disclination loop threaded on a
twisted nylon fiber has a characteristic figure-eight shape.

4 Analytical model

4.1 Axial planar anchoring

Let us consider first a cylinder with planar axial anchoring
a//y, immersed in a nematic. In the absence of fields and

C2 

C2 

C2 

C2 
C∞

y x 

a

z 
→

σvxz 
a →

C2 

b

B 

→ →
B 

xz 
a →

yx 

yz 

C2 
C2 

c

a →

C2 

d

B 

→yz a 

Fig. 23. Symmetries of the system “cylinder + field”. a) Pla-
nar axial anchoring, no field: D∞h, for simplicity only one mir-
ror plane parallel to the cylinder axis and one twofold axis
orthogonal to it are shown; b) planar axial anchoring + field
orthogonal to the cylinder: D2h; c) planar axial anchoring +
field oblique to the cylinder: C2v; d) helical anchoring + field
orthogonal to the cylinder: D2.

other surface conditions the director field n would take the
direction parallel to the cylinder axis y. The symmetry of
this ground state is D∞h (see fig. 23a).

When a magnetic field B is applied in the direction
z orthogonal to the cylinder, the symmetry D∞h is bro-
ken into D2h (see fig. 23b) and the director field will be
distorted: far from the cylinder it will take the direction
of the field while on the cylinder surface it will remain
parallel to y.

As shown in fig. 24 two distorted ground states a and b
are possible. Taken separately they are symmetrical only
with respect to the longitudinal mirror plane yz and to the
twofold axis C2//x orthogonal the field. All other symme-
try operations of the group D2h (mirror planes xy and xz
and the two-fold axis C2//B) exchange the two ground
states.

The same symmetry breaking occurs when the cylinder
immersed in a nematic is submitted to the action of glass
plates with homeotropic anchoring [15].

In the two ground states generated by the magnetic
field, the distorsion is localized in a cylindrical shell the
thickness of which is given by the so-called magnetic
coherence length ξ (see sect. 3.2.2 in ref. [18]). In the ap-
proximation of isotropic elasticity (K1 = K2 = K3 = K)

ξ(B) =

√
μoK

χa

1
B

(5)
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Fig. 24. Fiber with axial anchoring in the magnetic field or-
thogonal to it: a and b are the two ground states.

and the elastic energy per unit surface of the distorted
boundary layer is given by

F =
1
2

K

ξ
. (6)

4.2 Tilted magnetic field, translation of disclination
loops

When the magnetic field is oblique to the cylinder (for
example tilted in the direction of the y axis, as shown
in fig. 23c), the symmetry D2h is broken to C2v and the
two ground states are no more related by any symmetry
operation. If the angle between the magnetic field and
cylinder is written as

π

2
− θB =

π

2
(1 − ε), (7)

where ε � 1, then the distortion energy of states a and b
becomes

Fa/b = (1 ∓ ε)2
K

2ξ
. (8)

When the two possible states a and b coexist on the fiber,
there must be a disclination loop at the junction between
them. This can be easily checked by following the director
orientation on the circuit 12341 drawn with dashed line in
fig. 24. At the starting point 1 the director is (0, 0, 1) while
after the whole turn of the circuit it becomes (0, 0,−1).

The energies per unit surface of the boundary layers
adjacent to the disclination loop Fa and Fb can be seen as
forces per unit length pulling on the loop, respectively, in
−y and y directions. The resultant force

f = Fa − Fb =
2K

ξ
ε (9)

will pull the loop in the y direction when the tilt angle
of the magnetic field θB = επ

2 is positive. As a result, the
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nn
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η

Fig. 25. Fiber with helicoidal anchoring in the magnetic field
orthogonal to it: a) and b) are the two ground states related
by the twofold symmetry axis C2 parallel to the x axis.

disclination loop will move in the y direction, as observed
in experiments.

When other disclination loops coexist on the fiber then
their sequence can represented as

a − DL1 − b − DL2 − a − DL3 − b . . . . (10)

In this sequence, the ground states a and b are located
respectively on left and right sides of loops DL1 and DL3

as it is shown in fig. 24. In the case of the loop DL2 the
positions of the ground states are inverted so that the
force f given by eq. (9) changes its sign. This explains the
behavior of the three loops in fig. 21.

4.3 Helicoidal planar anchoring

In the case of the helicoidal anchoring the anchoring di-
rection a can be written as

a = [sin(α) sin(ψ), sin(α) cos(ψ), cos(α)], (11)

where α is the angle between a and the helix axis y while
ψ is the angle of the cylindrical coordinates (r, ψ, y). When
the magnetic field B is, for example, parallel to z then the
angle β between B and a is given by

β = arccos[sin(α) sin(ψ)]. (12)

In the boundary layer of type a shown in fig. 25a the angle
γ between the director and the magnetic field decreases
from β to zero on the distance ξ

γ(ζ) = β
2 arctan[exp(−ζ/ξ)]

π/2
, (13)

while in the boundary layer of the second type b the angle
γ grows from β to π:

γ(ζ) = π − (π − β)
2 arctan[exp(−ζ/ξ)]

π/2
. (14)
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The elastic energy per unit area of the boundary layer is
then given by

Fa =
1
2
K

∫ ∞

0

(
dγ

dζ

)2

dζ =
K

2ξ

(
β

π/2

)2

(15)

for the type a and by

Fb =
K

2ξ

(
π − β

π/2

)2

(16)

for the type b.
When α is small, one has

β =
π

2
− sin(α) sin(ψ) (17)

and one gets approximatively

Fa/b ≈
K

2ξ

(
1 ± 4 sin(α) sin(ψ)

π

)
. (18)

4.4 Field-induced tilt of disclination loops

We know already that when the two ground states a and
b occur alternatively on the fiber, disclination loops must
occur at junctions between them. Due to the dependence
of Fa/b on the cylindrical coordinate ψ, there is a force
per unit length acting on the disclination loop

f = Fa − Fb ≈
K

ξ

4 sin(α)
π

sin(ψ) (19)

This force has to be balanced by a deformation of the
loop. Let δ(ψ) be the displacement of the loop in the y di-
rection. In coordinates (δ,Rψ) the disclination loop looks
like a string with tension T (see fig. 26b). In equilibrium,
the restoring force due to the curvature of the tense string
will balance the force f

−T

1
R2

d2δ
dψ2

√
1 + 1

R2 ( dδ
dψ )2

=
K

ξ

4 sin(α)
π

sin(ψ). (20)

For small deformations one obtains

− d2δ

dψ2
= δo sin(ψ) (21)

with

δo =
4
π

K

T

R2

ξ
sin(α), (22)

so that
δ = δo sin(ψ). (23)

If one looks at the loop from the direction of the magnetic
field then

η =
δo

R
=

4
π

K

T

R

ξ
sin(α) (24)

is the angle that the loop makes with the xz plane.

B →

y 
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Rψη

δ
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b c 

a b d d 

c 
b 
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b

d

Fig. 26. Tilt of the disclination loop induced by the magnetic
field: a) view of the fiber from the direction of the magnetic
field; b) flattened representation of the fiber surface.

5 Discussion and conclusions

5.1 Chirogyral effect in fields: detection of helicity

In the limit ξ � D, the chirogyral coefficient in eq. (24)
is thus inversely proportional to the magnetic coherence
length ξ(B) defined in eq. (5). This result can be easily
transposed to the case of the electric field E acting on
nematics with the positive dielectric anisotropy εa writing

ξ(E) =
√

K

εoεa

1
E

. (25)

In the limit ξ(E) � D, the chirogyral coefficient is thus
proportional to the intensity of the electric field |E|. From
the previous work [15] we know that in the limit ξ → ∞,
that is to say E → 0, the value Cgo of the chirogyral
coefficient depends on the ratio between the diameter D =
2R of the fiber and the thickness d of the cell. In summary,
the dependence of the chirogyral coefficient on the field
intensity can be written as:

Cg = Cgo(1 + AE + BE2 + . . .). (26)

These theoretical results explain the experimentally
observed variation of the tilt angle with the intensity of
the electric field plotted in fig. 13. In conclusion, when the
nematic has a positive dielectric anisotropy, the applica-
tion of the electric field enhances the chirogyral effect and
allows to detect a very small helicity of fibers.

y 

q → 

Fig. 27. Relationship between the helicity of the anchoring
and the handedness of the cholesteric texture.
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The second result of this experiment is that the chir-
ogyral effect can be canceled by submitting the HPC fiber
to an adequate positive torsion. This means that the an-
choring on the surface of the HPC fiber drawn by hand
is helicoidal and left-handed as shown in fig. 27. During
the drawing of the fiber from the anisotropic HPC/water
solution the polymer solution is submitted to an elonga-
tional flow resulting in a large stretching ratio. The bire-
fringence of fibers drawn by this method is close to the sat-
uration. One can think therefore that the bulk of the HPC
fibers has the double twist right-handed texture shown in
fig. 27. This right-handedness of the cholesteric helix of
HPC agrees with conclusions of the optical measurements
made by Werbowyj and Gray [20]. Our method allows thus
to measure the helicity of fibers.

5.2 Translation and merging of disclination loops

We have also pointed out that captive disclination loops
can be set in motion by magnetic fields oblique to fibers.
The direction of this translation is opposite for adjacent
disclinations. By an adequate choice of the direction of
the magnetic field, these motions can be made converging
so that merging of adjacent disclination loops becomes
possible. This effect is suitable for conception of microme-
chanical and microfluidic systems in which the captive
disclination loops would transport substances contained
in their cores.
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