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Abstract. While thermoelectric transport theory is well established and widely applied, it is not always
clear in the literature whether the Seebeck coefficient, which is a measure of the strength of the mutual
interaction between electric charge transport and heat transport, is to be related to the gradient of the
system’s chemical potential or to the gradient of its electrochemical potential. The present article aims
to clarify the thermodynamic definition of the thermoelectric coupling. First, we recall how the Seebeck
coefficient is experimentally determined. We then turn to the analysis of the relationship between the
thermoelectric power and the relevant potentials in the thermoelectric system: As the definitions of the
chemical and electrochemical potentials are clarified, we show that, with a proper consideration of each
potential, one may derive the Seebeck coefficient of a non-degenerate semiconductor without the need to
introduce a contact potential as seen sometimes in the literature. Furthermore, we demonstrate that the
phenomenological expression of the electrical current resulting from thermoelectric effects may be directly
obtained from the drift-diffusion equation.

1 Introduction

Thermoelectricity is a mature yet still very active area of research covering various fields of physics, physical chemistry,
and engineering. The large interest in thermoelectric systems is mostly due to the promising applications in the
field of electrical power production from waste heat as thermoelectric devices may be designed for specific purposes
involving powers over a range spanning ten orders of magnitude: typically from microwatts to several kilowatts. Further,
thermoelectricity also provides model systems that are extremely useful in the development of theories in irreversible
thermodynamics [1, 2].

The discovery of the thermoelectric effect is usually attributed to Seebeck. In 1821, he published the results and
analysis of his experiments aiming at establishing a magnetic polarization in a metallic circuit simply by perturbing the
thermal equilibrium across this latter [3]. More precisely, Seebeck described the appearance of a magnetic field within
a closed electrical circuit made of two dissimilar materials as the junctions between these materials were maintained
at different temperatures. While Seebeck interpreted the observed phenomenon as a thermomagnetic effect, Oersted
soon re-examined Seebeck’s work and showed that in this case the magnetic field was an indirect effect as it originated
in the presence of an electromotive force induced by the temperature difference [4]. The proportionality coefficient
between this electromotive force and the temperature difference across the system is the thermoelectric power, which
has also been coined as “Seebeck coefficient”.

The definition of the thermoelectric coupling has later been extended from that derived from the first experiments
to both thermodynamic [5] and microscopic [6–9] properties of materials. However, as of yet, there still is no clear
consensus on its relationship with the various thermodynamic potentials and their variations (see, e.g., refs. [10–16]).
Indeed as the terminology and conventions may vary from a discipline to another, say, e.g., solid-state physics and
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Fig. 1. Determination of the Seebeck coefficient for a circuit composed of two dissimilar materials.

electrochemistry, it is not always straightforward to establish a clear distinction or relevant associations between Fermi
energy at zero or finite temperature, electrochemical potential, voltage, Fermi level relative either to the conduction
band minimum or to the vacuum, and chemical potential.

In this article, we discuss the definition of the Seebeck coefficient focusing particularly on the distinction between
chemical and electrochemical potentials. First, in sect. 2, we address the experimental determination of the Seebeck
coefficient in order to identify the quantities of interest. Next, the purpose of sect. 3 is to demonstrate that a clear
physical picture of thermoelectric phenomena at the microscopic scale may be obtained on the condition that the
potentials are carefully introduced. For this purpose, we review the standard definitions given in the literature to
remove any confusion between the chemical and electrochemical potentials before we present and discuss our derivation
of the Seebeck coefficient for a non-degenerate semiconductor.

2 Experimental determination of the thermoelectric power

The determination of the Seebeck coefficient traditionally involves components made of dissimilar materials, which
we label A and B, respectively. The two materials are combined to obtain two junctions as depicted in fig. 1. These
junctions are then brought to different temperatures T1 and T2. An isothermal voltage measurement at a temperature
T3, is performed between the free ends of the component B. The voltage thus measured is V2−V1 (this notation allows
to clearly define a direction for the voltage) and the Seebeck coefficient αAB associated to the global system, i.e. the
couple AB, is defined as the proportionality coefficient between the resulting voltage and the applied temperature
difference:

αAB =
V2 − V1

T2 − T1
. (1)

The coefficient αAB, obtained for the whole circuit, is related to the Seebeck coefficient of each material through [17]:

αAB = αB − αA, (2)

where αA and αB are the Seebeck coefficients of the materials A and B, respectively.
From an experimental viewpoint, the presence of the material B (�=A) is mandatory as it is associated with the

probe’s wires (see, e.g., ref. [18]). However, if its Seebeck coefficient αB is sufficiently small to be neglected, the
measurement may be used to determine directly the Seebeck coefficient of material A. In this case, one gets:

αA = −V2 − V1

T2 − T1
. (3)

Note the presence of a minus sign in the expression above: It is often overlooked in the literature but, fortunately, that
omission is most of the time compensated by the absence of a clear sign convention for the measured voltage.

Let us now turn to the analysis of the measured quantities. While the temperature is not subject to questioning,
the voltage obtained from a voltmeter must be defined unambiguously. Indeed, it appears that its connection to
the microscopic and thermodynamic properties of materials has remained unclear for quite some time, leading Riess
to publish in 1997, hence fairly recently, an article titled “What does a voltmeter measure?” [19]. In that paper,
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Riess demonstrated that the voltage measured by a voltmeter between two points in a circuit is the difference of
electrochemical potentials μ̃ at the two considered points divided by the elementary electric charge e, but not the
difference between the electrostatic potentials ϕ alone. The potential V might thus be defined as V = −μ̃/e. This
result is recovered when one measures the voltage at the ends of a pn junction at equilibrium: While there is a built-in
electric field associated to the depletion layer, the measured voltage remains zero. The Seebeck coefficient thus appears
as a link between the applied temperature difference and the resulting difference of electrochemical potential between
the two junctions.

The simple technique presented here is not the only one used to determine the thermoelectric power of a given
material. Indeed, since the measurement always involves a couple of materials, the absolute Seebeck coefficient of the
second material has to be known accurately. To obtain this value, it is possible to use low temperature measurement
to reach superconducting state where α = 0 and then derive higher temperatures values using the Thomson coefficient
that can be measured for a single material. For a detailed presentation of the Seebeck coefficient metrology, the reader
may refer to the instructive review by Martin et al. [20].

3 Relationship between the thermoelectric power and the electrochemical potential

In order to better understand the influence of each potential, we identify the respective effects of temperature bias,
concentration difference, and electric charge, and we discuss the relationship between chemical potential, electrochem-
ical potential and the band diagram of materials. We then derive the Seebeck coefficient in the simple case of a
non-degenerate semiconductor to illustrate the contribution of each potential.

3.1 Definition of the thermopower

The Seebeck coefficient may be obtained from a microscopic analysis of the considered materials, with the local version
of eq. (3), in open-circuit condition, i.e., with a vanishing electrical current:

α =
∇μ̃

e∇T
, (4)

where μ̃ and T are, respectively, the local electrochemical potential and temperature, defined at each point of the
system. The notation ∇ is associated with the gradient of each quantity. In the following, for the sake of simplicity,
we consider a unidimensional system so that the spatial gradient reduces to its x-component: ∇x.

3.2 Distinction between the potentials

Consider a semiconductor sample at thermal equilibrium and characterized by a spatially inhomogeneous doping.
As the carrier concentration is non-uniform, a particle current takes place from the region of higher concentration
to that of lower concentration: This is the diffusion process associated to the variation of the carriers’ chemical
potential across the system. This type of electrical current is referred to as the diffusion current. The inhomogeneous
electron population in the system thus generates an electric potential difference and hence a built-in electric field which
influences the electrons’ motion in such a fashion that it tends to curb the diffusion current. The electron motion driven
by the built-in electric field is the drift current, which, at thermal equilibrium, exactly cancels the diffusion current, in
accordance with the principle of Le Chatelier and Braun. In this case, the measured voltage across the system always
remains zero and there is no net electrical current even if the system is short-circuited: The electric field associated
with the electrical potential variation is obviously not an electromotive field. However, if the electrons are placed in
a non-equilibrium situation caused by a thermal bias applied across the system, a non-vanishing electric current may
be obtained when the circuit is closed. This current obviously stems from the uncompensated contributions of both
the diffusion and drift of charge carriers, and it is traditionally related to the gradient of the temperature and to the
gradient of the electrochemical potential.

The electrochemical potential μ̃ of a population of electrically charged particles is the sum of a chemical contribution
μ, the chemical potential, and of an electrical contribution μe [17]:

μ̃ = μ + μe. (5)

Note that the quantities we just referred to as potentials are actually energies. The electrical contribution μe may
be expressed as a function of the electrostatic potential ϕ (a genuine potential contrary to μ̃ and μ) so that the
electrochemical potential reads:

μ̃ = μ + qϕ, (6)



Page 4 of 8 Eur. Phys. J. Plus (2016) 131: 76

Fig. 2. Energy levels in an n-type semiconductor highlighting the notations used in this article (adapted from ref. [8]). The
energy EG refers to the bandgap energy.

Fig. 3. Schematic illustration (adapted from ref. [21]) of the variations of the bottom of the conduction band, EC , the top of
the valence band, EV , the Fermi level, EF , and the vacuum level just outside the material, εS , all along the circuit depicted in
fig. 1. The slopes of the lines have been greatly exaggerated for clarity, and band bending at the interfaces has been neglected.

where q is the electrical charge of the considered particle. When used in solid state physics, these quantities have to be
related to an energy band diagram. This correspondence may be found for example in the book of Heikes and Ure [8]:
Considering the example of an n-doped semiconductor, the electrochemical potential μ̃ corresponds to the Fermi level,
the electrostatic energy −eϕ corresponds to the energy level of the bottom of the conduction band while the chemical
potential μ corresponds to the difference between these two quantities and is often called Fermi energy. These notations
are summarized on fig. 2. The difference between Fermi level (μ̃) and Fermi energy (μ) was already highlighted by
Wood [9]: “The difference between the Fermi energy and the Fermi level should be noted. The Fermi energy is generally
measured from the adjacent conducting band edge (valence or conduction band for holes or electrons, respectively), i.e.
a reference level which may vary in energy, whereas the Fermi level is measured from some arbitrary fixed energy
level”. This last remark stresses the importance of the choice of an energy reference, which is a key parameter: To
express energies in a semiconductor, the bottom of the conduction band is often used as the reference [10]; however,
for studies of non-equilibrium phenomena such as thermoelectricity, it is mandatory to define an arbitrary fixed energy
reference independent of the position within the material since both μ̃ and μ may vary along the system. It seems the
only way to correctly describe the relative displacement of these energies. Note that the vacuum level infinitely far
from the system, E∞, might be a good and meaningful energy reference.

Figure 3 illustrates the variations of the different energies around the circuit depicted in fig. 1 in the case of
semiconductor materials. It highlights the difference between the slope of the bottom of the conduction band and the
slope of the Fermi level: The variation of the chemical potential thus differs from the variation of the electrochemical
potential. Distinguishing these two energies is, therefore, crucial to properly evaluate the Seebeck coefficient. Figure 3
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also displays the vacuum level εS just outside the material (different from E∞). This vacuum level is related to the
bottom of the conduction band through the affinity χ of the material. The discontinuities in εS at the interfaces might
be seen as contact potentials. On the contrary, the Fermi level EF is continuous along the system, even at the interfaces.
Its variation however undergoes a sudden change at the interface, reflecting both changes in the temperature gradient
(assumed constant in a given material) and in the Seebeck coefficient from a material to an other. The thermopower
is indeed associated to bulk material but not to interfaces. A similar figure for a system made of metals can be found
in ref. [21].

3.3 From potentials to thermoelectric power: the illustrative case of a non-degenerate semiconductor

We emphasise the importance of the distinction between μ̃ and μ on the derivation of the thermoelectric power
using the example of a non-degenerate semiconductor doped with electrons. In this case, the expression of the carrier
concentration n is rather simple:

n(T ) = N exp
(

μ̃ − EC

kBT

)

= N exp
(

μ

kBT

)

, (7)

with

N = 2
(

2πmeffkBT

h2

)3/2

, (8)

and where EC is the energy level of the bottom of the conduction band, meff is the electron effective mass, kB is
the Boltzmann constant and h is the Planck constant. The Seebeck coefficient is associated with non-equilibrium
phenomena, and, as such, it is tightly linked to transport properties of electrons inside the material. To take account
of these properties, we build on the drift-diffusion equation used to obtain the net electrical current density Jx:

Jx = enMnEx + eDn∇xn, (9)

where Mn and Dn are the electron mobility and diffusivity, and where the electric field Ex is related to the energy
level EC through

Ex = −∇xEC

q
=

∇xEC

e
. (10)

At first, we assume a situation where the electron diffusivity Dn does not depend on the other parameters, including
the position. The variation of Dn will be discussed further below.

The Seebeck coefficient is obtained setting Jx = 0. However this current density should be related first to ∇xT and
∇xμ̃ rather than to Ex and ∇xn. To do so, we evaluate the gradient of the electron density given by eq. (7) considering
that EC, μ̃ and T may vary along the material. This approach is seldom found in the literature as one often sets
EC = 0, thus considering the bottom of the conduction as the reference everywhere in the non-equilibrium system.
As already stressed, this viewpoint is misleading for thermoelectric phenomena. From eq. (7), the gradient of electron
density reads:

∇xn =
3
2

n∇xT

T
+

n

kBT 2
[T (∇xμ̃ − eEx) − μ∇xT ] . (11)

We then use this equality along with Einstein’s relation between the electron mobility Mn to the electron diffusivity Dn,

Mn

Dn
=

e

kBT
, (12)

to modify eq. (9) as follows:

Jx = enMn

(

∇xμ̃

e
+

kB

e

[

3
2
− μ

kBT

]

∇xT

)

. (13)

Now, setting Jx = 0 and using the definition given in eq. (4), we find

α = −kB

e

[

3
2
− μ

kBT

]

, (14)

with a constant electron diffusivity, which is the expected expression for a non-degenerate semiconductor. Further,
this result may also be interpreted by looking at the net thermal energy transported by each carrier transported inside
the material, i.e., qΠ, where Π is the Peltier coefficient [17]. For electrons, this energy is

−eΠ =
3
2
kBT − μ, (15)
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Table 1. Values of the exponent s for different scattering mechanisms (adapted from ref. [22]).

Scattering mechanism Exponent s

Acoustic phonon −1/2

Ionized impurity (strongly screened) −1/2

Neutral impurity 0

Piezoelectric +1/2

Ionized impurity (weakly screened) +3/2

since it corresponds to the energy above the Fermi level μ̃ and hence to the sum of the average thermal energy for free
electrons and of the energy between the Fermi level and the bottom of the conduction band, i.e., −μ. We thus recover
the second Kelvin relation relating the Seebeck and Peltier coefficients: Π = αT .

3.4 Taking into account diffusivity variation

If we relax the assumption of constant diffusivity Dn, this latter becomes a function of the spatial coordinate x and
we end up with the so-called Stratton equation [22]:

Jx = enMnEx + e∇x (Dnn)
= enMnEx + eDn∇x (n) + en∇x (Dn) . (16)

It corresponds to a more general form of the drift-diffusion equation, which contains a third contribution to the carrier
motion, directly linked to the gradient of diffusivity along the system. To evaluate its effect on the thermoelectric
power, we may reexpress it as a function of the temperature gradient using the relation between the diffusivity Dn

and the relaxation time of the carriers τ . Since Mn = eτ/meff , the Einstein relation reads

Dn = kBT
τ

meff
. (17)

To keep the calculations on an analytical level, we assume that we deal with low-energy conduction electrons, and we
express the relaxation time using a power law of the form: τ ∝ (E − EC)s, where E is the total energy of the carrier
and s is a characteristic exponent depending on the scattering mechanisms [22]. Some typical values for this exponent
are given in table 1. Note that the energy E −EC corresponds to the thermal energy of the carriers in the conduction
band and may thus be approximated by its average value, i.e., 3/2kBT . Replacing τ in eq. (17), we obtain

∇x(Dn) =
Dn

T
(1 + s)∇x(T ). (18)

Finally, inserting eq. (18) and eq. (11) in eq. (16) yields:

Jx = enMn

(

∇xμ̃

e
+

kB

e

[

5
2

+ s − μ

kBT

]

∇xT

)

, (19)

and, consequently,

α = −kB

e

[

5
2

+ s − μ

kBT

]

. (20)

The contribution of the diffusivity gradient to the thermoelectric power is −(1 + s)kB/e and hence depends only on
the scattering parameter s. This term has also been recovered by Cai and Mahan [12] using a Boltzmann equation.
Note that this term was also introduced by Ioffe [23] with the notation αD. However, Ioffe used a different power
law: He assumed that the carrier’s mean free path l is proportional to (E − EC)r. He consequently found that
αD = −(1/2 + r)kB/e. This discrepancy is quite easy to understand since τ is proportional to l/

√
E − EC.
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4 Discussion

4.1 An unusual derivation

While the result given in eq. (14) is well-known, its derivation presented here is quite original. Indeed, it was directly ob-
tained from the drift-diffusion equation. Thus, the phenomenological equation associated with thermoelectric transport:

Jx = σ
∇xμ̃

e
− σα∇xT, (21)

where σ = enMn is the electrical conductivity, is identical to eq. (19) (or to eq. (13) depending on the hypothesis
made). This latter appears as a modified form of the drift-diffusion equation, which accounts for the couple of
variables [μ̃,T], or more precisely their gradients, rather than the traditional couple [n, ϕ]. This modification puts
forth the fact that the first term of the right hand side of eq. (21) does not correspond any longer to the genuine local
form of Ohm’s law since it does not involve the electrical field Ex. In this case, the true electromotive force is given
by the gradient of the electrochemical potential as carriers experience both diffusion and effects of the electric field.

The simple derivation of eq. (19) has been allowed by the use as a reference of a fixed energy level, arbitrarily
chosen but independent of the position along the material, rather than the bottom of the conduction band. This
approach demonstrates that a particular knowledge of both ∇xn and Ex is not mandatory to determine the Seebeck
coefficient of a non-degenerate semiconductor. Indeed, in this case, these two contributions to the electrochemical
gradient seem to always compensate each other in such a way that the resulting electromotive power is independent of
specific assumptions, for example a constraint on the carrier concentration. Equation (19) is thus valid for a wide range
of temperatures: It is correct for the extrinsic regime, i.e., when the carrier concentration is fixed by the concentration
of impurities, but it also remains valid in the freeze-out regime and in the intrinsic regime where additional carriers are
thermally generated. However, in this latter regime, the electron hole contribution to thermoelectric power should also
be considered as these minority carriers may no longer be negligible. One may also refer to ref. [24] in which the authors
derive the Seebeck coefficient focusing only on potentials and the electric field rather than using a statistical approach.

4.2 Link with non-equilibrium thermodynamics

While eq. (21) is widely used in solid-state physics, its formulation is slightly different in non-equilibrium thermo-
dynamics as general forces are traditionally computed from the gradients 1

T ∇xμ̃ and ∇x(1/T ), instead of ∇xμ̃ and
∇xT [17, 25]. So, one should then rewrite eq. (21) to get

Jx =
σT

e
· 1
T
∇xμ̃ + σαT 2 · ∇x

(

1
T

)

. (22)

With this form, it is possible to identify each term with the canonical expression [17],

−JN =
Jx

e
= L11 ·

1
T
∇xμ̃ + L12 · ∇x

(

1
T

)

, (23)

to recover the expressions of the kinetic coefficients in the thermoelectric case, i.e., L11 = σT/e2 and L12 = σαT 2/e.

4.3 On the so-called effective Seebeck coefficient

Let us now turn to the previous analysis of the thermoelectric power in non-degenerate semiconductor. In ref. [11],
Mahan introduces an effective Seebeck coefficient S, distinct from the genuine thermoelectric power eq. (3) obtained
from measurements. In a subsequent article with Cai [12], this effective coefficient is presented as the ratio between the
electric field and the temperature gradient. These two different Seebeck coefficients are related through the following
relation [12]:

α = S +
1
e

(

∂μ

∂T

)

n

, (24)

A comparison of eq. (16) with eq. (20) of ref. [11] leads to identify the effective Seebeck coefficient to the contribution
of the diffusivity gradient, i.e., αD. The second term of the right-hand side of eq. (24) should then be associated to
the assumption of constant diffusivity, i.e., to eq. (14). This latter term is identical to the so-called Kelvin formula
of the thermopower [13]. As discussed by Shastry [26], this contribution “captures the many body density of states
enhancements, while missing velocity and relaxation contributions”. It thus justifies the introduction of the coefficient
S to take into account dynamical effects. We believe however that this coefficient should not be presented as effective
since it does not reflect the appearance of the electromotive force due to the temperature gradient. It represents
only one of the possible contributions to this electromotive force. From a practical viewpoint, it has recently been
demonstrated that the contribution to the thermopower from the diffusivity gradient might be significant [27].
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4.4 On the contact potentials

Finally, we want to point out the inappropriate use of the contact potentials in the derivation of the thermoelec-
tric power sometimes found in the literature. For example, in ref. [23], Ioffe obtains eq. (19) splitting the Seebeck
coefficient into three separate terms, one being αD while the two others, αn and αϕ, are associated, respectively, to
concentration gradient and to the “temperature dependence of the contact potential”. However, as demonstrated later
by Chambers [21], contact potentials are irrelevant to thermoelectric effects. This latter term is indeed introduced only
to compensate the erroneous expression of αn stemming from the confusion between ϕ and μ̃/e. From an experimental
viewpoint, contact potentials are irrelevant since they cannot be probed by a voltmeter: As depicted in fig. 3, these
energy discontinuities concern only the bottom of the conduction band EC (or identically the vacuum level just outside
the material εS) but not the Fermi level EF .

5 Conclusion

In this article, we have discussed the definition of the thermoelectric power with a special emphasis on its relationship
to the electrochemical potential. A proper consideration of all potentials inside the material has led to demonstrate
that the phenomenological equation for the electrical current involving thermoelectric coefficients may be derived
directly from the drift-diffusion equation. We also shed light on the physical interpretation of the effective Seebeck
coefficient defined by Mahan, showing that it is actually related to the gradient of diffusivity along the system.
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