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Abstract. A complete description of properties of the wave-train bifurcating from unstable basic oscillatory
states (CW nonlinear stationary states) of the nonlinear Schrödinger equation are studied in the moving
frames of reference as an initial value problem and using the methods of absolute and convective instabili-
ties. The predictions are in excellent agreement with numerical solutions and may contribute understanding
the nonlinear Schrödinger equation complex dynamics under various initial conditions including, localized
and/or noisy initial conditions.

1 Introduction

Since the early work of Rayleigh in the 19th century, for
studying linear stability of extended dynamical systems
the normal-mode approach – classical linear stability anal-
ysis (CLSA) – is traditionally used, see e.g. [1,2]. In this
approach, base solutions of the linearized equations of mo-
tion having the form of a monochromatic wave, fei(kx−ωt),
are treated, where x is the spatial coordinate, t is the time,
k is a wavenumber, ω is a frequency and f is the amplitude
of the wave. The base state is unstable when, for some real
k, frequency ω has a positive imaginary part. The normal-
mode analysis is an indispensable part of any linear stabil-
ity analysis. However, within the normal-mode approach
the dynamics of realistic spatially localized perturbations
cannot be treated. In order to address this dynamics one
has to treat an initial-value problem formulation for the
linearized equations of motion under the assumption of
spatially localized initial conditions and, if any, spatially
localized boundary conditions.

The theory of evolution of localized disturbances bi-
furcating from unstable basic state, that is of wave-train,
in open systems also known as the theory of absolute and
convective instabilities has been developing since the early
1950s, see [3,4]. For two-dimensional homogeneous flows
and media, this theory received its sound modern form in
reference [5], see also [6] and references therein, and for
optics see [7].

A growing wave-train in an open medium can develop
according to two essentially different scenarios. In the first
scenario, the localized disturbance moves away from the
place of its origin, but spreads in space fast enough so that,
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Fig. 1. (a) Absolute instability; (b) convective instability.

at every point of the medium, growth occurs destroying
eventually the base state throughout. This is the scenario
of absolute instability. In the alternative scenario, the
temporally growing wave-train propagates in space more
rapidly than it spreads leaving behind, during such a de-
velopment, a decaying disturbance at every fixed point in
space. In this case the medium is called absolutely stable,
but convectively unstable. A schematic one-dimensional
illustration of the spatiotemporal evolution of the enve-
lope of wave-train in the absolutely unstable case and in
the convectively unstable, but absolutely stable case is
presented in Figure 1.

The analysis of absolute and convective instabilities
provides an important information that cannot be ob-
tained by treating normal modes. It allows one to compute
the group velocity of realistic localized disturbances and
also to estimate the spatial amplification of such distur-
bances in the absolutely stable, but convectively unstable
case [8,9]. In the latter case one can estimate a portion
of the domain in which the state can be viewed as rep-
resenting a physical end state depending on the spatio-
temporal evolution characteristics of the convectively un-
stable wave-train in the base state, whereas an unstable
normal mode is unstable in the entire medium domain.

The theory of absolute and convective instabilities was
extended to two-dimensional stationary spatially periodic
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media and to the two-dimensional spatially homogeneous
temporally oscillating case in references [10,11], respec-
tively. The theory developed in reference [11] was applied
in that paper to analyzing the unstable temporally oscil-
lating solutions of the nonlinear Schrödinger (NLS) equa-
tion and it was shown that all such solutions are absolutely
unstable. Here we apply the above theory to studying the
stability characteristics across the wave-train and, in par-
ticular, the dependence of the spatio-temporal structure
of the wave-train on the observer velocity.

The nonlinear Schrödinger (NLS) equation

iψt − sψxx + V ′
(
|ψ|2

)
ψ = 0, (1)

is used for modeling the dynamics of dispersive waves
in a wide variety of nonlinear dynamical systems e.g. in
nonlinear optics [12], quantum optics and hydrodynamics
(cf. [13] and references therein). In (1), ψ is complex val-
ued, x is a homogeneous coordinate, t is time, and s is
1 (−1) for either defocusing diffractive media or normal
dispersion in dispersive ones (for focusing diffractive me-
dia or anomalous dispersion in dispersive ones). V(·) is a
real-valued smooth given function.

The sensitivity to the initial condition of systems de-
scribed by this NLS equation has been widely pointed out
during the last years [14]. The phenomenon of sensitivity
to noisy (or not) initial condition is not specific to NLS
equation but rather an important consequence of convec-
tive instabilities giving rise to noise-sustained structures
in a wide class of nonlinear systems including hydrody-
namic [15] and nonlinear optics [16,17]. Recently many of
the aforementioned systems governed by the NLS equa-
tion have been shown to exhibit waves with very large
amplitude, combined with a particular L-shape probabil-
ity density [18–22]. These solutions have been shown to be
strongly nonlinear, giving rise to the appearance of rogue
waves that are nowadays widely observed in many systems
of nonlinear science [20,23,24]. However, in many cases,
the first stage preceding their emergence was shown to be
governed by the modulational instability process by means
of a classical normal-mode approach. The aim of this study
is to respond to the important questions: (i) How a local-
ized initial condition may impact the first stage of the evo-
lution of the nonlinear solutions? (ii) What are their main
characteristics during this evolution? For this purpose, we
extend the analysis of the NLS equation in reference [11]
to studying the characteristics of the unstable linear wave-
trains in the moving frames, that is, the properties of the
wave-trains such as the temporal amplification rate, the
oscillatory frequency, the local wave nature and the local
spatial amplification rate across the wave-train solutions.

The paper is organized as follows. In Section 2 we
present a concise discussion of the oscillatory solutions of
the NLS equation and of stability of such solutions, and
also give the general form of the solution of an initial-value
problem for localized perturbations. Section 3 describes
the treatment of the characteristics of the wave-train as
functions of the observer velocity. The spatiotemporal evo-
lution of wave-train is investigated and compared to nu-

merical solutions of NLS equation in Section 4. We discuss
our results and conclude in the last Section.

2 Basic oscillatory states of the NLS equation
and stability

Equation (1) possesses a family of exact oscillatory
solutions

ψ0 = A exp (iΩt) where Ω = V ′
(
|A|2

)
, (2)

with A being complex amplitude.
The basic linear stability properties of the solutions (2)

are well established [12]. The destabilization of the solu-
tions plays an important role in the formation of pulse
trains, the generation of supercontinuum [25], the subse-
quent formation of rogue waves [14], and the filamentation
process [26]. The linear stability analysis of the basic state
ψ0 under perturbations of the form ϕ (x, t) exp (iΩt) leads
to the equation:

iϕt − sϕxx + V ′′
(
|A|2

)(
|A|2 ϕ+A2ϕ∗

)
= 0. (3)

Within the normal-mode approach, [1], the perturbation
is assumed to have the form of a monochromatic wave,
that is, ϕ ∼ exp[i(kx−ωt)], where k is a wavenumber and
ω is a frequency. We substitute an expression of this form
for ϕ into equation (3) and assuming that ϕ �= 0 obtain
that a non-zero monochromatic wave solution exists only
for the pairs (k, ω) that satisfy the dispersion relation:

D (k, ω) ≡ ω2 − k4 − 2sk2 |A|2 V ′′
(
|A|2

)
= 0. (4)

The base state is linearly unstable if and only if there ex-
ists a real-valued k for which the imaginary part of the cor-
responding frequency, ω = ω(k), is positive. From equa-
tion (4) one readily obtains

ω1,2 (k) = ±k
√
k2 + 2s |A|2 V ′′

(
|A|2

)
. (5)

Hence, for instability it is necessary and sufficient
that there exists a real-valued k satisfying k2 +
2s|A|2V ′′(|A|2) < 0. Since the parameter s is either 1 or
−1, we obtain that the above instability condition holds
only for s = −1. In what follows only the case s = −1
will be considered. Before going further in our study, we
note that the above informations (a single wavenumber
of the destabilizing mode k (real) and its accompanying
complex frequency ω1,2(k)) are all what can be provided
by the CLSA. By contrast, in order to determine the lin-
ear response of the system to a localized perturbation, it is
necessary to include a finite band of modes in the dynami-
cal description. This can be achieved by reformulating the
linear stability analysis as an initial-value problem. This
makes it possible to determine the main dynamical char-
acteristics of the wave-train bifurcating from the unstable
base state including growth rate, instantaneous frequency
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and wavenumber and more importantly, its velocity. As
it will be shown in the following, the velocity drastically
affects the global spatiotemporal growth rate and the spa-
tiotemporal description of the wave-train.

3 Mathematical formalism of absolute
and convective instabilities:
an initial-value problem

For studying the dynamics of localized linear disturbances,
i.e., absolute and convective instabilities, of the base so-
lutions of an extended flow one has to treat a corre-
sponding linear initial-value problem. A treatment of such
a problem by using a combined Fourier-Laplace trans-
form and a consistent mathematical formalism for ana-
lyzing the asymptotic of the solutions of the problem in
the two-dimensional homogeneous case were developed by
Briggs [5], see also [6]. Here, we present the form of the
solution and sketch the technique for the evaluation of its
asymptotic in time in the absolute frame of reference as
well as in the moving frames.

In the absolute frame of reference which is the frame
of a stationary observer, that is x0 is fixed, the solution
can be expressed as an inverse Fourier-Laplace integral:

ϕ (x, t) =
∫ ∞

−∞
dk

∫ iσ+∞

iσ−∞

S (ω, k)
D (ω, k)

ei(kx0−ωt)dω, (6)

where the function S(ω, k) represents the external pertur-
bations and, therefore, can be viewed as arbitrary in a
certain sense, and D(ω, k) is the dispersion-relation func-
tion (Eq. (4)). In the inverse Laplace integral in (6) the
integration is performed along the Bromwich contour [1],

B = {ω|ωi = σ,−∞ < ωr <∞}, (7)

where σ is greater than the maximum growth rate of
the monochromatic waves, σ > σm = max{ωi|D(k, ω) =
0,−∞ < k <∞}.

We are also interested in the asymptotic properties
of the solution in a frame of reference moving with the
velocity V with respect to the absolute frame, that is x =
x0 + V t, where x0 is fixed. In the moving frame, by a
change of variables in the double integral the solution can
be brought to the form

ϕ (x0 + V t, t) =
∫ ∞

−∞
dk

∫ iσ+∞

iσ−∞

S (ω + V k, k)
D (ω + V k, k)

× ei(kx0−ωt)dω. (8)

Since the function S (ω, k) representing the external dis-
turbances is in some sense arbitrary, it does not affect
the asymptotic properties of the solution. The integral
in (8) has a form similar to that of the integral in (6),
with D(ω + V k, k) being the dispersion-relation function
in the moving frame. Hence, the evaluation of the asymp-
totic behavior of the integrals in (6) and in (8) is similar.
We outline here the evaluation procedure for the integral
in (6).

0

ωr

ωi

ω ↘ ω0

ω0

σ

σm

Fig. 2. Movement ω ↘ ω0 of ω.

k0 = k1(ω0) = k2(ω0)

0 kr

k2(ω)

k1(ω)

ki

Fig. 3. Collision of two k-roots originating on opposite sides
of the real k-axis when ω ↘ ω0.

For the evaluation, the Briggs [5] collision criterion
(see also [6]) is applied. The collision criterion allows one
to identify the points in the upper complex half-plane,
{ωi > 0}, that contribute to the growth in time of the
solution. For the solution given in (6) the identification
is preformed as follows. Let ω0 be a point in the upper
complex half-plane and let ω ↘ ω0 denote a movement
of the point ω along the vertical line passing through ω0

from above the Bromwich contour till ω0, as illustrated
in Figure 2. Let kn(ω), n = 1, 2, . . . , be all the k-roots of
D(k, ω) = 0. For ω laying above the Bromwich contour,
all the k-roots are located away from the real k-axis be-
cause σ > σm. When ω ↘ ω0 the k-roots move in the
complex k-plane. The point ω0 contributes to the growth
of the solution if and only if, in the most common case,
two of the k-roots originating on opposite sides of the real
k-axis collide when ω reaches the point ω0 in the move-
ment ω ↘ ω0. This type of a collision is called a pinching
collision. Generally, a collision of several k-roots with, at
least, two roots originating on opposite sides of the real
k-axis produces a point ω0 contributing to the instabil-
ity [7,27]. However, commonly only collisions of two roots
are present. One such a collision is illustrated in Figure 3.

At the collision point, k = k0, the function D(k, ω) has
a double root in k and, hence, at (k, ω) = (k0, ω0) it holds
that

D (ω, k) = 0,
∂D (ω, k)

∂k
= 0. (9)

A branch of the function ω = ω(k) has at the collision
point a simple stationary point satisfying dω(k0)

dk = 0. A
contribution to the asymptotic of the solution, ϕ(x, t), as
t→ ∞, from a point ω = ω0 satisfying the collision crite-
rion is given by:

C(x0, ω0) = a(k0, ω0, x0)
1√
t
eik0x0e−iω0t, (10)
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where k = k0 is the collision point as described above.
In the cases when the k-roots of D(k, ω) = 0, cannot be
analytically explicitly computed but can rather be numeri-
cally calculated, the points satisfying the collision criterion
can be found by following the movement of the images of
the Bromwich contour on the complex k-plane under the
transformations k = kn(ω), n = 1, 2, . . . , and identifying
the collision points of the images originating on opposite
sides of the real k-axis, as ω varies from above ωi = σm

down to zero [7,27]. The asymptotic of the solution in
time along a ray x = x0 + V t, with V �= 0, that is, the
asymptotic of the integral in (8) is evaluated similarly.

An evaluation of the asymptotic of the solution can in
principle also be performed by finding all the saddle points
in the upper ω-half-plane of all the branches of the func-
tion ω = ω(k) and applying the steepest descent method
at every such a point. However, the crucial task in such
a procedure is to prove the existence of the global steep-
est descent contour which is equivalent to the real k-axis.
As a matter of fact, the mere existence of a saddle point
in the upper ω-half-plane does not guarantee at all that
the point contributes to the growing asymptotic of the so-
lution, see a discussion in reference [28]. In particular, it
has been shown in reference [27] that in the Eady model
of a geophysical flow [29], there exists an infinite number
of saddle points in the upper ω-half-plane none of which
contributes to the growing asymptotic of the solution.

4 Description of wave-train bifurcating
from the base state of the NLS equation

The formalism of absolute and convective instabilities for
two-dimensional homogeneous flows developed in refer-
ence [5] was extended to spatially periodic flows and,
respectively, to temporally oscillating flows by Brevdo
and Bridges [10,11], respectively. In the temporally os-
cillating case which is of interest in the present study,
an initial-value problem formulated for an equation with
time-periodic coefficients is treated by a Fourier trans-
form, then by a Floquet transform and finally by a Laplace
transform. The solution of the initial-value problem is ex-
pressed as an inverse Fourier-Laplace integral of a form
similar to that of the integral in (6). As a consequence,
the method for studying the dynamics of wave-train de-
scribed in the previous section applies in this case.

In reference [11], the asymptotic of the unstable wave-
train of the NLS equation in the absolute frame of refer-
ence were studied and it was shown that all the oscillatory
base solutions of the NLS equation are absolutely unstable.
The asymptotic profile of the wave-train of the NLS equa-
tion in the moving frames were treated in reference [30]
by using the steepest descent method in the framework
of the saddle-point approach. In the present paper, we
extend the consistent theory in reference [11] to moving
frames in order to identify absolutely stable but convec-
tively unstable domains. More importantly, we apply the
collision criterion for analyzing the structure of wave-train
of the NLS equation and obtain the results which are in
good agreement with the results obtained in reference [30].
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Fig. 4. Illustration of the pinching collision for b = 1 and
V = 0.96.

In the latter, the crucial question in a saddle-point treat-
ment of the existence of a global steepest descent contour
for the saddle point which lies entirely in the valley of
the ω-branch and is equivalent to the real k-axis was not
addressed. However, good agreement between our results
and the results in reference [30] implies that in this par-
ticular case the saddle-point approach works.

In the case under consideration, the solutions of the
system corresponding to system (9) for a frame moving
with velocity V with respect to the absolute frame,

D (ω + V k, k) = 0,
∂D (ω + V k, k)

∂k
= 0, (11)

can explicitly be calculated. The solutions are given by:

k0
1,2,3,4 = ±

√
b+

V 2

8
± V

2

√
V 2

16
− b, (12)

where b = |A|2V ′′(|A|2). By using these notations, the
corresponding values of ω are expressed as:

ω1,2 (k) = −kV ± k
√
k2 − 2b. (13)

The maximum growth of the normal modes, σm = b, is
attained at k = ±√

b. From (12) one can see that for
|V | < 4

√
b all the k0-roots are complex-valued and it holds

that k0
1 = −k0

2 = k0
3
∗ = −k0

4
∗
, where the asterisk denotes

the complex conjugate. When |V | � 4
√
b all the k0−roots

are real-valued, with k0
1 = −k0

2 and k0
3 = −k0

4 .
In Figure 4, the movement ω ↘ ω0 and a collision

of two k-roots of D(ω + V k, k) = 0 originating on op-
posite sides of the real k-axis are shown by solid curves
for the case b = 1 and V = 0.96. In this case ω0 =
−0.98593 + 0.890795i and (k0

r , k
0
i ) = (1.07791, 0.216129).

To illustrate the mapping of ω to the complex k-plane
close to the point of collision we present in this figure also
the movements ω ↘ ω0 ± ε, with ε = 0.02 and the tra-
jectories of the corresponding k-roots in the k-plane by
using dotted (ω0 − ε), and dotted-dashed ω0 + ε, curves,
respectively.

Then, repeating the aforementioned procedure we have
obtained the following results (see Fig. 5):

(i) k0
1 : in the region 0 � V � 4

√
b, this branch can be

written in the form k0
1 = ks(V ) = ksr(V ) + iksi(V )
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Fig. 5. Evolution of the real (a) and imaginary (b) parts of the
contributing saddle points. The real and imaginary part of the
corresponding ω branches are given by (c) and (d), respectively.

with ksr � 1 and ksi > 0. When collisions occur
on this branch, Re(ω) < 0 which correspond to ω1

branch in Fig. 5c). For V � 4
√
b, k0

1 = ksr > 0 is
purely real and the collisions are observed also for
Re(ω) < 0 but with Im(ω) = 0.

(ii) k0
2 : in the region −4

√
b � V � 0, this branch can be

written in the form k0
2 = −ksr(V ) − iksi(V ). When

collisions occur on this branch, Re(ω) < 0 which cor-
respond to ω2 branch. For V � −4

√
b, k0

2 = −ksr

is purely real and the collisions are observed also for
Re(ω) < 0 but with Im(ω) = 0.

(iii) k0
3 : in the region −4

√
b � V � 0, we have

k0
3 = ksr(V ) − iksi(V ). When collisions occur on this

branch, Re(ω) > 0 which correspond to ω2 branch.
(iv) k0

4 : in the region 0 � V � 4
√
b, we have

k0
4 = −ksr(V ) + iksi(V ). When collisions occur on

this branch, Re(ω) > 0 which correspond to ω1

branch.

That is, complex type contributing points (−4
√
b � V �

4
√
b) correspond to locally growing solutions. In addition,

in this region we observe a degeneracy of the imaginary
part of the contributing points which leads to the degener-
acy of the growing rate Im(ω). In contrast, purely real con-
tributing points (V � −4

√
b and V � 4

√
b) are marginal

solutions and no degeneracy is observed. Based on these
results, in the region of complex type contributing points,
we find the following relations between the contributing
part in the integrands:

ω1(k0
1 , V > 0) = ω2(k0

2 , V < 0) = S(ks, V ),

ω1(k0
4 , V > 0) = ω2(k0

3 , V < 0) = S∗(ks, V ),

with
S (ks, V ) = −ks |V | + ks

√
ks2 − b. (14)

After lengthy but straightforward calculations we obtain,
from (8), the asymptotic shape of the impulse response as:

ϕ (V t, t) 	

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
1

2πt

[
Re

(√
1

iS′′ exp (iSt)
)

+ i Im
(√

1
iS′′α (ks) exp (iSt)

)]

if |V | � 4
√
b,

√
1

2πt

[
1 +

√
ks2

0−2

ks0

] √
1

iS′′ exp (iSt)

if |V | � 4
√
b,

(15)
where α (k) =

√
k2 − 2b/k and the primes correspond to

the derivative with respect to k. This result was also ob-
tained in a previous work [30], but without checking the
pinching condition. In Figure 6 we have plotted this pro-
file after a propagation distance t = 30 together with the
result of the numerical integration of equation (1). As can
be seen from this figure we have an excellent agreement
between the two results. It is worthy to stress some in-
triguing differences between the results presented here and
the standard modulational instability that appears in this
system. The first point that we would emphasize is the
existence of a band of modulational instability in which
no saddle point can be found. Indeed, as can be seen from
Figure 5a the region −1 � Re(k0) � 1 is free of any sad-
dle point while the standard analysis predicts the whole
band −√

2 � Re(k) �
√

2 to be unstable. In addition we
have obtained here that the unstable band is locally ex-
tended up to |Re(k0)| =

√
3. Since the Fourier spectrum

fails to capture these properties of the wave-train we need
an appropriate method that allows the access to the local
phase. For this end, we have computed the Hilbert trans-
form of the impulse response. However, it is well-known
that the accuracy of the instantaneous frequency obtained
from the numerical Hilbert transform is relevant close to
the dominant component of the Fourier spectrum that is,
around the center of the pulse. In order to improve the
detection of the local wavenumber we have computed the
wavelet transform of the signal and then calculated the
ridges of this transform, which produces the (+) symbols
in Figure 7, showing an excellent agreement with the an-
alytical predictions.

5 Discussion and concluding remarks

The evolution of a growing disturbance in both space and
time is drastically different from those obtained by the
CLSA (normal mode theory). The initial value problem
formulation shows the key role played by the observer ve-
locity (group velocity) in the modulational instability pro-
cess. Indeed, despite the appearance of a band gap in the
frequencies excited locally, we observe an extension of the
instability region outside the standard modulational in-
stability limit. This also suggests that the instability gain
seen by an observer is closely related to the velocity with
which this one is moving. In order to verify this statement
we track the position of a given local frequency along the
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tion (15) (solid line) and from numerical integration of equa-
tion (1) (dot-dashed line).
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Fig. 7. Local wavenumber of the impulse response (solid line)
and the wavelet ridges (+) of the numerical result of Figure 6.

propagation which allows us to compute the associated
velocity. Next, considering this velocity we compute the
corresponding global gain. Repeating this process leads to
the mapping of the global gain with respect to the veloc-
ity and implicitly with respect to the local wavenumber
as can be seen in Figure 8. This map of the global gain
with respect to the local wavenumber can be obtained
theoretically by making a parametric plot from the an-
alytical expression (solid lines in Fig. 8), which shows a
good agreement between the two results. Note that since
the global gain is symmetric in k, we only show in Fig-
ure 8 the analytical results for k > 0. A question now
arises as what happens if an observer moves with a veloc-
ity outside the range −4 � V � 4 (see Fig. 5)? In that
case, according to equation (15) this observer will see a
wave-train experiencing an attenuation ruled by a t−1/2

power law since S is real and the exponential term is os-
cillating (Im(ω) = 0). This behavior constitutes another
fundamental difference between the initial value problem
approach and that of normal mode. Indeed, in the later
approach a plane wave with a wavenumber outside the
instability band will be neither amplified nor attenuated
(marginally stable mode), meanwhile in the initial value

analyt
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)
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Fig. 8. Analytical (solid line) and numerical (triangles) local
gain curves of an impulse perturbation.

problem formulation no marginal situation can exist. This
behavior is illustrated in Figure 9, where we have plotted
the inverse of the intensity across the time with two ve-
locities V = 5 ant V = 12 which gives a linear evolution
as predicted by the above power law.

Let us now concentrate on the fact that no local
wavenumber exists in the band |k0

r | < 1 (see Fig. 5a).
It is understandable that this result means that starting
with a narrow band localized state, the spontaneous so-
lution that will form will be that given by equation (15).
However, the question may arise about the wave number
k0

r such that |k0
r | < 1. To elucidate this question we can

benefit from the asymptotic solution previously derived.
Indeed, this expression is an estimation of the Green func-
tion, i.e., the linear impulse response of the system. That
is, as well as we have computed the instantaneous wave
numbers of this solution, we can also compute the group
displacement. Hence, in addition to have an access to the
mean position of the pulse, this curve can provide an in-
sight about whether an initial pulse centered around a
given wavenumber will experience some distortions effects.
By analogy to the group delay of a temporal pulse, here,
the group displacement is used to quantify the variation
of the translational shift as a function of the wavenum-
ber of an impulse traveling through the system. Further
and deep discussion about the group delay concept can be
found in reference [31].

The estimation of the group displacement from both
analytical and numerical pulse have been carried out.
However, since the two results are almost mingled we
only show here that obtained from the numerical solu-
tion in Figure 10. As can be seen from this figure, the
group displacement is zero for 0.6 � k � 1.7 and presents
fast variations elsewhere. On the other hand it appears
from this result that starting with a pulse with central
wavenumber lying in the aforementioned region will not
produce any distortion, whereas any initial pulse with cen-
tral wavenumber outside this region will experience some
distortions leading to a non-localized structure as can be
seen in Figure 11. Indeed, in this figure we have plotted
the output signal that emerges from an initial Gaussian

http://www.epj.org
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Fig. 10. Group Displacement of the linear impulse response
of equation (1).

pulse at k = 0.3, 1.2 and 1.8. As expected from the above
group displacement, the pulses at 0.3 and 1.8 experience
distortion effects while the pulse at 1.2 is free from any
distortion effects.

In conclusion, we have estimated by means of an
initial-value problem formalism, the linear impulse re-
sponse associated with continuous wave (cw) solutions of
the Nonlinear Schrödinger equation. This approach allows
us to compute the global (spatiotemporal) gain of the sys-
tem which displays a gap in the band of standard modula-
tionally unstable wavenumbers. We also show through the
determination of the group displacement that this band
gap induced a region of wavenumbers where the group de-
lay vanishes. In this region we have observed that pulses
maintain their shape without distortion. However, any ini-
tial pulse with a wavenumber outside this region evolves to
a distorted output pulse. Finally, owing to the ubiquitous
nature of the NLS equation in nonlinear science, the re-
sults obtained here can be applied to such diverse fields as
the hydrodynamics, plasma physics, and nonlinear optics.
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