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Abstract. We present a molecular dynamics method addressed to the calculation of the lattice thermal
conductivity during the transient regime of approach to equilibrium from an initial condition of nonuniform
temperature profile. We thoroughly assess the basics, the robustness, and the accuracy of the method,
in particular by showing that its results are basically independent of most of the arbitrary simulation
parameters. In addition, the method here presented is computationally light, thus paving the way for the
investigation of large systems. This feature is fully exploited to investigate the thermal transport properties
of disordered and nanostructured silicon samples, providing a clear atomistic picture on the ability of grain
boundaries and lattice disorder to affect thermal conductivity by improved scattering of vibrational modes
with long mean free path.

1 Introduction

While a basic understanding of heat transport at the
macroscopic scale has already been achieved [1,2], many
important issues concerning its atomic-scale details are
still a matter of intense research. For instance, a full
understanding of the heat transport phenomena at the
nanoscale is of crucial importance to improve both perfor-
mance and function of novel thermoelectric as well as heat
sink materials [3–8]. For this reason, atomistic simulations
(like, e.g., molecular dynamics simulations, Boltzmann
transport equation, and Green’s function approaches) rep-
resent a valuable tool for addressing the atomistic details
of thermal transport: as a matter of fact, they are exten-
sively used to address various aspects of thermal transport
phenomena in complex materials [8–11].

In this work, we focus on molecular dynamics (MD),
where nanoscale structural features, as well as phonon-
phonon interactions, are in principle described exactly.
In particular, we critically address the approach to equi-
librium MD method (hereafter referred to as AEMD)
which has been recently introduced [12] and success-
fully applied to predict thermal conductivity in nanoscale
semiconductor systems [13,14].

Two different techniques are mainly used to model
the heat transport by MD, namely: equilibrium (EMD)
and nonequilibrium (NEMD) molecular dynamics. EMD
calculates the thermal conductivity κ at temperature T
along a given z direction using the equilibrium fluctuations
of the heat current vector j through the current-current
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autocorrelation function [15]

κ =
1

kBT 2V

∫ +∞

0

〈 jz(t)jz(0)〉 dt (1)

where kB is the Boltzmann constant, V is the system
volume, and 〈· · · 〉 indicates the ensemble average.

NEMD [8,16,17] instead, calculates κ in analogy to the
experimental measurement, i.e. by means of the Fourier
law

jz = −κ
∂T

∂z
(2)

where the external perturbation ∂T/∂z and the system
response jz are separately computed, eventually getting
the thermal conductivity as the response-to-perturbation
ratio κ = −〈jz〉/∂T/∂z. Usually the NEMD method
is implemented on the approach proposed by Müller-
Plathe [8,16], where the periodically-repeated simulation
box is divided into Ns slabs. Slab 0 is defined as the
hot slab and slab Ns/2 is the cold slab. The heat flux
is generated by exchanging the kinetic energy between
the hottest atom in the cold slab and the coldest atom
in the hot slab in order to decrease the temperature in
the cold slab and increase it in the hot one. After a suit-
able number of exchanges a nonequilibrium steady state
is eventually reached and both 〈jz〉 and ∂T/∂z are easily
computed. Alternatively, a thermal gradient can be estab-
lished by thermostatting the two opposite terminal layers
of a finite-thickness slab at different temperatures, while
its inner part is evolved microcanonically. After a long
enough simulation, a steady state thermal gradient is so
generated and the corresponding 〈jz〉 calculated.
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Even thought both EMD and NEMD methods are
largely used to describe thermal transport phenomena in a
variety of different systems, they suffer from several draw-
backs which often limit their applications to atomistic
models large enough to properly describe a given com-
plex nanostructure. As far as concerns the EMD methods,
their main limitation is the very long time needed to con-
verge the current-current autocorrelation function [8]. It
has been shown recently [9] that as many as O(106) atoms
and several hundred thousands MD time-steps are indeed
necessary to provide a fully converged value of lattice ther-
mal conductivity in a system such as bulk crystalline sil-
icon. In turn, NEMD methods are mainly limited by the
very long simulation time needed to establish a steady
state condition, once that a given temperature gradient
or heat current is imposed.

In this work we rather use AEMD in which the sim-
ulation is performed in a transient thermal conduction
regime. The system is initially set out of equilibrium by
imposing a step-like temperature difference ΔT between
the left- and right-half of the simulation cell. Then, the
time evolution of ΔT (t) is monitored during a micro-
canonical (NVE) MD run until the system reaches the
equilibrium, corresponding to ΔT = 0. It is shown below
that κ can be easily estimated by fitting the ΔT (t) with a
suitable solution of the heat equation. The typical simula-
tion time needed to reach the equilibrium is comparatively
much shorter than in EMD or NEMD calculations, thus
paving the way for simulations with unprecedented size.

The primary goal of the present work is methodolog-
ical, namely: to assess the accuracy and performances of
the AEMD method against several simulation parameters.
In particular, we study the dependence of the estimated
thermal conductivity κ on each single method-specific fea-
ture and gauge AEMD reliability on several benchmark
systems of current interest, i.e. crystalline, amorphous and
nanocrystalline silicon.

2 Approach to equilibrium molecular
dynamics

Heat transport is described by means of the heat
equation [9]

∂T

∂t
= κ̄

∂2T

∂z2
(3)

where κ̄ = κ/ρcv is the thermal diffusivity of the system
with density ρ and specific heat cv. We assume that κ,
ρ and cv do not depend neither on t nor on z over the
period of time corresponding to the typical duration of
the simulation.

Equation (3) can be solved by separating the variables

T (z, t) = H(z)T (t) (4)

leading, after some algebra, to

T (z, t) =
∞∑

n=1

[An cos(αnz) + Bn sin(αnz)]e−α2
nκ̄t (5)

Fig. 1. Sketch of the simulation cell used in the AEMD sim-
ulations, with periodic boundary conditions along any direc-
tion. The hot (0 < z < Lz/2) and cold (Lz/2 < z < Lz)
regions are initially set at temperature T1 and T2, respectively,
with T1 > T2.

where αn = 2πn/Lz, while An and Bn depend only on
the initial condition T (z, 0) = H(z) through the following
expressions

An =
1
Lz

∫ Lz

0

cos(αnz)H(z)dz (6)

Bn =
1
Lz

∫ Lz

o

sin(αn)H(z)dz. (7)

By considering a system defined in an interval with
0 ≤ z ≤ Lz (see Fig. 1), three kinds of boundary condi-
tions (BCs) are commonly encountered in heat transfer
problems, namely: (i) Dirichlet BCs set as T (0, t) = 0 =
T (Lz, t); (ii) von Neumann BCs set as ∂T

∂z (0, t) = 0 =
∂T
∂z (Lz, t); and (iii) periodic BCs set as T (0, t) = T (Lz, t)
and ∂T

∂z (0, t) = ∂T
∂z (Lz, t). Since we aim at applying this

formalism to MD simulations, the natural choice is se-
lecting periodic BCs. In particular, we set the following
step-like temperature profile

H(z) =
{

T1 for 0 < z < Lz/2
T2 for Lz/2 < z < Lz

which is also shown in Figure 1.
In this case the general solution of equation (3) is:

T (z; t) = A0 +
∞∑

n=1

Bn sin(αnz)e−α2
nκ̄t (8)

where

A0 =
1
Lz

∫ Lz

0

H(z)dz =
T1 + T2

2
(9)

Bn =
1
Lz

∫ Lz

0

sin(αnz)H(z)dz

=
T1 − T2

αnLz
[cos(αnLz) − 1] (10)

while under these conditions for n �= 0 we get

An =
1
Lz

∫ Lz

0

cos (αnz)H(z)dz = 0. (11)

By now ageing the system in a microcanonical MD sim-
ulation, the initial step-like temperature profile is pro-
gressively smoothed by thermal conduction and, therefore,
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the average temperatures 〈T1〉 and 〈T2〉 in the two semi-
cells

〈T1〉 =
1
Lz

∫ Lz/2

0

T (z, t)dz (12)

and

〈T2〉 =
1
Lz

∫ Lz

Lz/2

T (z, t)dz (13)

vary in time toward approaching a uniform temperature
(i.e. equilibrium) configuration. During such a transient
regime we can define the time-dependent difference in av-
erage temperatures ΔT (t) = 〈T1〉 − 〈T2〉 which, through
equation (8), is easily shown to be:

ΔT (t) = 〈T1〉 − 〈T2〉 =
∞∑

n=1

Cne−α2
nκ̄t (14)

where

Cn = 8 (T1 − T2)
[cos (αnLz/2) − 1]2

α2
nL2

z

. (15)

Equation (14) is the key equation of the AEMD method,
which actually proceeds through three simple steps:

– an initial periodic step-like temperature profile is
generated within the simulation cell;

– the system is then aged by a microcanonical run,
during which the ΔT (t) function is computed;

– after collecting such a function during a long enough
simulation (see below), ΔT (t) is fitted by equation (14)
and the thermal diffusivity is straightforwardly
calculated.

The corresponding thermal conductivity is eventually
evaluated as κ = κ̄ρcv, where quantum corrections below
the Debye temperature (ΘD) should be duly considered
for the specific heat. In detail, we have:

κ = κ̄ρcv =
κ̄Cv

V
(16)

where Cv is the heat capacity for T > ΘD

Cv = 3NKB (17)

and quantum corrections, taking into account the devia-
tions from the Maxwell-Boltzmann distribution below the
Debye temperature [18], are usually inserted by renormal-
izing Cv by a factor q̄ defined, in turn, as the ratio between
the actual temperature and the Debye temperature. In
particular, for c-Si at 600 K we get q̄ = 0.947 and for a-Si
at 300 K we get q̄ = 0.891.

3 Assessing AEMD

As a test case for assessing the AEMD accuracy and ro-
bustness we use c-Si at 600 K whose thermal conductivity
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Fig. 2. Time evolution of the temperature profile across a
c-Si sample with Lz = 543.2 nm and S = 3.80 × 3.80 nm2 as
obtained by solving analytically equation (3) (smooth lines)
and by direct MD calculation of local temperature (noisy color
lines).

has been experimentally measured [19] and theoretically
calculated [20,21]. All the simulations are performed at
an average temperature of 600 K which is close to the Si
Debye temperature of 625 K. This choice allows to min-
imize the quantum corrections to the heat capacity, thus
allowing for a cleaner interpretation of any true AEMD
feature.

3.1 Computational details

All the simulations are performed using the LAMMPS [22]
package and the Environment Dependent Interatomic
Potential (EDIP) [23]. This potential consists of a func-
tional form incorporating several coordination dependent
functions in order to adapt the Si-Si interactions to any
possible bonding configuration. For this reason, EDIP is
particularly suitable for the description of non-crystalline
systems such as the nano-crystalline and amorphous Si
simulated here. In all simulations below the equations
of motions have been integrated by the velocity-Verlet
algorithm with a time step as short as 10−15 s.

The AEMD simulation protocol requires at first the
creation of a (periodic) temperature profile with a given
initial step ΔT (0): in the present simulations this step is
operated by Nosé-Hoover thermostatting, paying atten-
tion to avoid any heat exchange during the thermostat-
ting period. To this aim we first (then) equilibrate the hot
(cold) region at temperature T1 (T2) by keeping fixed all
atoms in the cold (hot) region. Figure 2 shows the time
evolution of a step-like temperature profile with ΔT (0) =
200 K generated across a c-Si sample with Lz = 543.2 nm:
while the smooth lines represent the formal solutions of
equation (3), the noisy lines represent the direct MD cal-
culation of the local temperature, during a microcanon-
ical run. In Figure 2 the local temperature T (z, t) was
calculated as an average over 103 time steps taken on a
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Fig. 3. Time evolution of ΔT (t) during the microcanonical
MD run for three samples with Lz = 108.61 nm, but different
cross sections S. The initial temperature difference between
the hot and cold regions is ΔT (0) = 200 K.

thin slab centered at z with thickness 0.5432 nm. The
simulated local temperature and the one obtained from
the formal solution are in very good agreement, indicat-
ing that the use of the Fourier law is valid for these type
of simulations. Furthermore, it evidences the applicability
of the AEMD method at such length scales, typical of a
molecular dynamics simulation.

3.2 κ dependence on the sample cross section

We first explore the κ dependence on the cross sec-
tion S by considering eight different c-Si samples with
Lz = 108.61 nm and S ranging from 1.63 × 1.63 nm2 to
4.34 × 4.34 nm2. The initial temperature of the hot and
cold regions is T1 = 700 K and T2 = 500 K, respectively,
corresponding to ΔT (0) = 200 K. In Figure 3 we show the
time evolution of ΔT (t) during the following microcanon-
ical MD run for just three samples for sake of clarity. We
remark that, for any value of S, the system evolves towards
ΔTeq = 0 K value in a transient time of equal duration.
Larger instantaneous oscillations of ΔT (t) are observed
for samples with smaller cross section. This is due to the
fact that the average temperatures from equations (12)
and (13) are calculated on a smaller number of atoms.

Figure 4 shows the calculated κ values for all sam-
ples with different cross section. As expected, κ is only
marginally dependent on the sample section as compared
to the κ dependence on the sample length (see below).
For sections larger than 2.17 × 2.17 nm2, κ converges
to a value of 18.2 ± 0.1 W m−1 K−1. Therefore, in all
the AEMD simulations below we consider cross sections
larger than 2.17×2.17 nm2 as the best choice with optimal
accuracy/cost ratio.

3.3 κ dependence on the initial temperature profile

In equation (3) we assumed that κ is not dependent on
the z position. In our AEMD simulations this assumption
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Fig. 4. Calculated κ for 8 c-Si samples with Lz = 108.61 nm,
but different cross sections S. The initial temperature differ-
ence between the hot and cold regions is ΔT (0) = 200 K.
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Fig. 5. Calculated κ for a c-Si sample with Lz = 108.61 nm
and S = 3.80× 3.80 nm2 as function of the initial temperature
difference between the hot and cold regions.

is indeed not strictly satisfied since κ is actually a function
of temperature, which is in turn a function of z. In order
to assess the limitations of the present assumption we per-
form a series of simulations where the initial temperature
difference ΔT (0) between the hot and cold regions was
set at 6 different values, namely: 50 K, 100 K, 150 K,
200 K, 250 K and 300 K. Figure 5 shows κ as a function
of ΔT (0) for a system with Lz = 108.61 nm and cross sec-
tion 3.80 × 3.80 nm2. Also in this case we do not observe
any meaningful dependence on ΔT (0). However for ΔT (0)
greater than 150 K the error significantly decreases and κ
converges to a value of 18.5± 0.1 W m−1 K−1. Therefore,
in all the AEMD simulations below we set ΔT (0) = 200 K.

Despite the reassuring results discussed above, we re-
mark that under high temperature differences, various
domains of the simulation cell are likely characterized
by different thermal conductivities (especially in the case
of highly conductive materials and/or very long simula-
tion cells). Therefore, the information extracted by AEMD
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Table 1. Calculated κ for a system with Lz = 162.91 nm
and S = 3.80 × 3.80 nm2 by using a different number Nexp of
exponentials in equation (15).

Nexp κ (W m−1 K−1)
1 23.2 ± 0.3
2 23.3 ± 0.2
5 23.4 ± 0.2
10 23.4 ± 0.2
20 23.4 ± 0.2
500 23.4 ± 0.2

simulation (i.e. the value of κ), should be regarded as an
effective linear response to thermal gradients.

3.4 κ dependence on the fitting procedure for ΔT(t)

Another important issue to be addressed is the κ depen-
dence on the number of exponentials Nexp used in equa-
tion (14) to fit ΔT (t). In principle an infinite number
of terms should be used in order to obtain the best fit
of ΔT (t). However, the computational cost of the fitting
procedure strongly increases with the number of exponen-
tials. For this reason our goal is to use the minimum num-
ber of exponentials providing an accurate κ value. The
results are summarized in Table 1 where we calculate κ
using Nexp = 1, 2, 10, 20, and 500. Interesting enough, κ is
basically independent on Nexp: the κ variaton between
Nexp = 1 and 500 is lower then 2%. We also observe that
κ is fully converged for any Nexp > 5. For this reason we
choose Nexp = 5 for the fitting procedure in all the AEMD
simulations below.

3.5 κ dependence on the fitting time interval

A key feature for the accuracy of the predicted value of κ
is the extension of the time interval over which ΔT (t) is
fit. In other words, we could fit ΔT (t) over the full time of
simulation (Fig. 3) or for shorter intervals. We will refer
to such time intervals as the fitting time t. Figure 6 shows
the dependence of the calculated κ upon the fitting time
in the range 0 ps ≤ t ≤ 200 ps for a c-Si sample having
a fixed length Lz = 162.91 nm, section 3.80 × 3.80 nm2,
and ΔT (0) = 200 K. In this case κ strongly depends on t,
in particular during the very first part of the simulation
where the system is still far from the condition of thermal
equilibrium and, therefore, long simulations seem neces-
sary. In fact, a possible way to reduce the computational
cost is to find a suitable fitting function able of repro-
ducing the κ vs. t trend, so to extrapolate the fully con-
verged thermal conductivity value κconv from a compara-
tively short simulation and, therefore, limiting the actual
duration of the AEMD simulation. As shown in Figure 6,
we have found a convenient function κ(t)

κ(t) = κconv [1 − A exp(−t/τ)] (18)

where κconv, A and τ are fitting parameters. The dashed
line in Figure 6 represents the fitted κ(t) compared to the
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Fig. 6. Symbols: calculated κ vs. fitting time t for a c-Si
sample with Lz = 162.91 nm and S = 3.80 × 3.80 nm2.
The dashed red line represents the fitting function κ(t) =
κconv[1 − A exp(−t/τ )].

actual κ directly obtained from the AEMD simulation. In
order to quantify the error due to the present fitting pro-
cedure we compare the value of κ obtained by an AEMD
run, as long as 200 ps with the corresponding κconv ob-
tained from equation (18) where, however, a much shorter
fitting time of 100 ps is used. The result is remarkable:
using half the simulation time to fit ΔT (t), thus reducing
remarkably the computational cost, the thermal conduc-
tivity was still estimated with an error smaller that 1%.
This is the key feature of the present method which is
greatly beneficial to minimize the overall computational
cost and, therefore, to favor the application of AEMD to
large system sizes.

3.6 κ dependence on the sample length Lz

The study of the κ dependence on the sample length Lz

represents an important issue for both NEMD and EMD
calculations. In general, if Lz is shorter than the average
phonon mean free path (MFP) λ, it is expected that κ =
κ(Lz) since phonons having a mean free path λ > Lz will
not contribute to the overall κ [8,24]. By increasing Lz, the
probability that phonons are scattered before reaching the
cell boundaries increases, giving rise to a diffusive regime
(instead of ballistic-like transport).

As extensively discussed in reference [24], the κ
dependence on Lz is explicitated as:

κ(Lz) =
1

NqV

∑
q,s

cq,sv
2
q,sτ∞,q,s

[
1 +

2|vq,s|τ∞,q,s

Lz

]−1

(19)

where the sum takes into account all the phonon modes
labeled by their momentum q and polarization s. The
terms cq,s, vq,s and τq,s are, respectively, the heat ca-
pacity, the group velocity and the relaxation time for in-
trinsic phonon-phonon bulk-like scattering corresponding
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c-Si sample with S = 3.80 × 3.80 nm2 and 108.61 nm ≤ Lz ≤
1629.15 nm. Full line: linear fit (see text).

to each vibrational mode. According to equation (19) it is
possible to write 1

κ = f( 1
Lz

), i.e. it is possible to define a
f -function converging to the inverse bulk value of thermal
conductivity 1/κ∞ when Lz is large enough to mimic an
infinite sample. Accordingly, it is possible to estimate κ∞
by considering the Taylor expansion

1
κ∞

= f(0) − f ′(0)
Lz

+
f ′′(0)
2L2

z

+ . . . (20)

where apices indicate the order of derivation of the
f -function. The resulting usual way of predicting κ∞
in NEMD calculations consists in: (i) truncating equa-
tion (20) at the first order term and (ii) plotting 1/κ
versus 1/Lz for a suitable range of sample lengths; κ∞
is eventually obtained by extrapolating with a linear fit
the NEMD data down to the 1/Lz → 0 limit. This proce-
dure is derived from the assumption that all the phonon
modes in equation (19) have the same average properties.
It has been shown in reference [24] that this assumption
is not valid when the contribution to the thermal con-
ductivity strongly depends on the single phonon modes.
The only way to overcome this problem is to perform the
above linear extrapolation procedure on simulation cells
larger than (or, at least comparable to) the phonon MFP.
By fully exploiting the reduced computational workload
of AEMD, we can study μm-long simulation cells, thus
meeting the above requirements for the reliability of the
linear extrapolation procedure.

We investigate the κ dependence on the sample
length Lz by simulating several periodically repeated cells
with same section S = 3.80× 3.80 nm2, a ΔT (0) = 200 K
and 108.6 nm ≤ Lz ≤ 1629.15 nm. Figure 7 shows the
corresponding 1/κ vs. 1/Lz plot. The extrapolated value
of κ is equal to 42 ± 2 W m−1 K−1 to be compared with
the experimental value [19] κ = 64 W m−1 K−1. This
result is very good, especially if contrasted with other
calculations [20,21].

Fig. 8. Snapshot of the final configuration of a nc-Si sample
with average grain size 〈dg〉 ∼ 15 nm. The sample has S =
2.715 × 27.15 nm2 and Lz = 81.5 nm.

4 Benchmark applications

As commented above, one of the main advantages of the
AEMD method is its computational cost with respect to
other EMD and NEMD techniques. This reflects in the
possibility to study very large systems, realistically repro-
ducing the main structural features of experimental sam-
ples. Profiting of these advantages, here we focus on the
study of thermal transport in nc-Si and a-Si: they are of
great interest both for their intrinsic physical properties
and for their possible use as energy materials. In addition,
they can hardly be investigated with other MD method-
ologies affected by slow convergence, since they do require
a combination of (very) large simulation cells and complex
computer-generation procedures.

4.1 Nanocrystalline silicon

In this work nc-Si, is looked at as the prototypical example
of a bulk nanostructured semiconductor with promis-
ing characteristics as highly efficient thermoelectric ma-
terial [3,4]. The underlying physical idea is that by nanos-
tructuring conventional semiconducting materials it is
possible to dramatically reduce the thermal conductiv-
ity without significantly affecting the corresponding elec-
trical conductivity, thus increasing the overall figure of
merit. This is due to the presence of internal bound-
aries (phase or grain boundaries) which maximize phonon
scattering [3,4,25], therefore reducing the overall thermal
conduction.

We generate atomistic models of nc-Si by following
a multi-step procedure repeatedly applied to simulation
cells that, by construction, have initially a cross section of
2.715× 27.15 nm2. Lz was instead varied from 81.5 nm to
190.10 nm for the reasons discussed above. Each system
was at first fully amorphized by quenching from the melt.
Then, a number Ng of atom sites were selected at random
in the yz plane and around each of them a cylindrical void
was created by removing atoms. Voids were distributed
avoiding overlap; also their initial radius was randomly
set above the capillarity threshold (∼0.5 nm) [26]. Next,
each void was filled by a crystalline seed randomly rotated
in the yz plane. The resulting mixed structures were an-
nealed at constant T = 1200 K for times up to 4.0 ns. Dur-
ing annealing the seed grains underwent growth through
solid state epitaxy, until full recrystallization occurred.
Figure 8 shows a snapshot of the final configuration for
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a nc-Si sample having cross section of 2.715 × 27.15 nm2

and Lz = 81.5 nm. In total we generated a set of ten
different templates, with average grain size 〈dg〉 ∼15 nm.
The values of thermal conductivity discussed below were
obtained as the 1/Lz → 0 extrapolation of a set of κ values
corresponding to such samples.

Figure 9 shows the 1/κ vs. 1/Lz plot (black curve)
for nc-Si together with the case of crystalline Si (red
curve), both calculated at T = 600 K with ΔT (0) =
200 K. It is quite evident the main effect of grain
boundaries to reduce the thermal conductivity by in-
creased phonon scattering: κ in nc-Si is estimated to
be, as low as 7.8 ± 0.1 W m−1 K−1, in contrast to the
42 ± 1 W m−1 K−1 value calculated for a c-Si sample
with same dimensions. This conclusion is confirmed by the
calculation of thermal conductivity accumulation function
(TCAF), here defined as the ratio κ(Lz)/κ∞ between its
value computed for a simulation cell with length Lz and its
corresponding extrapolated value for a bulk-like (infinite)
sample. κ(Lz)/κ∞ gives the contribution to the thermal
conductivity provided by phonons with mean free path
(MFP) up to Lz. In Figure 10 it is shown that for a nc-Si
sample as much as ∼90% of the thermal conductivity is
provided by vibrational modes with MFP ≤ 100 nm. On
the other hand, for c-Si the same contribution is provided
by phonons with MFP≤ 1 μm [24]. Therefore, we con-
clude that the reduction of thermal conductivity of nc-Si
predicted by the present AEMD analysis is mainly due to
the grain boundary scattering of phonons with long MFP.

4.2 Amorphous Si

We next move to the investigation of thermal transport
in a-Si, which is still a matter of discussion in recent lit-
erature [7,27–29]. Thermal conductivity in this material
is sometimes described by means of diffusons, i.e. non-
propagating localized vibrational modes. Recently, how-
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ever, it has been shown that thermal conductivity in
a-Si is also due to phonon-like diffusive modes, having
mean free paths longer than 100 nm, which provide a
sizeable contribution [7,27]. Here, we investigate the is-
sue whether thermal conduction is diffuson-dominated or
phonon-dominated, taking full profit of AEMD which eas-
ily allows to access cell dimensions comparable to the
maximum vibrational mean free paths in a-Si.

We generate amorphous samples by quenching from
the melt [26] several samples with S = 3.80 × 3.80 nm2

and 271.5 nm ≤ Lz ≤ 678.8 nm. In Figure 11 it is shown
the usual 1/κ vs.1/Lz plot. The corresponding extrapo-
lated κ value is 1.5 ± 0.02 W m−1 K−1 which is actually
in very good agreement with the recent experimental value
1.7 W m−1 K−1 reported in reference [7].

A deeper analysis of a-Si thermal conductivity is ob-
tained by calculating the TCAF. Also, we want to compare
the TCAF at 300 K of a-Si with its crystalline counterpart,
i.e. with a material with same chemistry but a definitely
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Fig. 12. Symbols: thermal conductivity accumulation function
calculated by AEMD for c-Si (red) and a-Si (black). Full lines:
corresponding accumulation function obtained by the linear fit
(see text).

phonon-dominated thermal conductivity. In order to cal-
culate the TCAF of c-Si at 300 K we have to consider
simulations cells having Lz in the order of several μm.
The use of such a large simulation cells is demanded by
the fact that recent experiments pointed out that 40%
of the total thermal conduction of c-Si at 300 K is due
to phonons having MFP longer than 1 μm [7,28,29]. For
this reason we consider simulation cells with 2715.2 nm ≤
Lz ≤ 9777.5 nm. We emphasize that such dimensions are,
to the best of our knowledge, unprecedented in any EMD
or NEMD calculations.

Figure 12 shows the TCAF calculation for a-Si and
c-Si. In the case of a-Si as much as ∼50% of κ is due
to diffuson-like modes having λ < 100 nm, while the re-
maining contribution is due to diffusive phonon-like modes
with λ >100 nm. This result is in agreement with recent
EMD calculations showing basically the same trend [27].
On the other hand, Figure 12 shows that in c-Si most of κ
is actually due to phonons having much longer MFP with
respect to a-Si. In particular, we conclude that ∼50% of κ
is due to phonons with λ > 1 μm, in very good agreement
with the recent experimental results of reference [7].

5 Conclusions

We have assessed basics, accuracy, and performances of
a nonequilibrium MD method (referred to as AEMD) for
the calculation of lattice thermal conductivity in a tran-
sient regime of approach to equilibrium. We have shown
that AEMD is theoretically robust and numerically accu-
rate, since the calculated κ values are basically indepen-
dent of most arbitrary simulation parameters. In addition,
we have provided evidence that AEMD is characterized
by ease of implementation and low computational work-
load. This allows for the investigation of realistically com-
plex systems. In this paper, we focused on the descrip-
tion of lattice thermal transport in nc-Si and a-Si systems,
here presented of paradigmatic examples of semiconductor

materials with large potential impact as energy materials.
The results for κ show a good agreement with recent ex-
perimental measurements, as well as with other theoreti-
cal calculations. They also provide a clean picture on the
role of grain boundaries and lattice disorder to affect the
contribution to thermal conductivity of vibrational modes
with long mean free paths.
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