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Abstract. The browsing behavior of massive web users forms a flow network transporting user’ collective
attention between websites. By analyzing the circulation of the collective attention we discover the scaling
relationship between the impact of sites and their traffic. We construct three clickstreams networks, whose
nodes were websites and edges were formed by the users’ switching between sites. The impact of site i, Ci,
is measured by the clickstreams controlled by this site in the circulation of clickstreams. We find that Ci

scales sublinearly with Ai, the traffic of site i. Specifically, there existed a relationship Ci ∼ Ai
γ(γ < 1),

which implies the decentralized structure of the clickstream circulation.

1 Introduction

The explosive growth of the world wide web in the past
two decades presents an urgent challenge for developing a
quantitative, predictive theory of the interaction between
the web and users. While previous studies analyzing the
hyperlinks [1–5] and individual browsing records [6–9] pro-
vide insight for understanding surfing behavior, they have
limitations restricted by the data used. Firstly, hyperlinks
are too simple to represent the rich interactions between
sites. From bookmarks and default home pages to his-
torical viewing records, there are many different ways in
which clickstreams are generated between sites of no hy-
perlink connections [10]. Secondly, while individual surfing
behavior has been extensively investigated [7–9,11], there
is still a lack of research studying collective browsing be-
havior from a network perspective [12]. Last but not least,
if we want to understand the long-range, complex interac-
tions between sites, the investigation on the local statis-
tics of sites, such as hyperlink degree [2] or traffic [7,8],
is not enough. Instead, we should probe into the trans-
portation of traffic between sites, that is, the flow of click-
streams [12,17]. As an illustration, in this work we analyze
the circulation of clickstreams among the top sites in the
world.

In literature, there are generally two different opinions
concerning clickstream dynamics. The “rich-get-richer”
paradigm suggests that user navigation enlarges the in-
equality of traffic among sites [13–15]. On the contrary,
the “egalitarian” paradigm argues that user navigation
actually makes the web a level-play place where new sites
have a greater chance of acquiring popularity [16]. To ex-
amine these two assumptions, we collect data from Alexa
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(www.alexa.com) and construct website-level clickstream
networks [12,16,17]. In these networks, the nodes are web-
sites and the edges are formed by the users’ switching be-
tween websites. We use Ci to denote the impact of the ith
site on other sites in clickstream circulation and examine
its correlation with Ai, the traffic of the site. It turns out
that Ci scales sublinearly with Ai as Ci ∼ Ai

γ(γ < 1).
We suggested that this pattern reflects the decentral-
ized structure of the studied clickstream networks. That
is, compared to large sites, small sites had a dispropor-
tionately larger impact in the circulation of clickstreams.
Therefore, our finding supports the assumption of the
“egalitarian” paradigm.

The presented approach of clickstream network anal-
ysis is not only interesting at its own right, but also pro-
vides a new way to investigate online activities. For exam-
ple, traditional studies on news diffusion focused on the
diffusion of news among users [18,19], but from the per-
spective of clickstream analysis, we can also understand
it in a “reversed” way, that is, the allocation of users’ at-
tention among news [20]. As a consequence, the rise and
decay of news reflects the competition among them for
users’ collective attention [20]. We can also easily extend
this analysis of news to tags [21], videos [22] or any other
type of information resources.

2 Materials and methods

2.1 Data collection

We select three lists of top 1000 sites worldwide as seed
sites. Two of them are collected from Google1 and the rest
one is collected from Alexa (please refer to supplemen-
tary material for the detailed information of these lists).

1 http://www.google.com/adplanner/static/top1000/
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Fig. 1. The visualization of w2. Solid circles represent web-
sites and edges show the clickstreams. The size of circles is
proportional to the logarithmic value of their traffic. Websites
of the same language are placed together and assigned the
same color. The layout of the network is obtained by apply-
ing force-based algorithm [24] twice, firstly in the (language)
community-level and secondly in the website-level within each
community.

The clickstreams between the seed sites are downloaded
from Alexa. From the downloaded data we construct three
clickstream networks (which are called w1, w2, and w3
hereafter), in which a directed, weighted edge wij indi-
cated the daily percentage of the global web users switch-
ing from site i to site j. As Alexa only reports the top
ten inbound and outbound clickstreams for each site, our
dataset does not necessarily include all the clickstreams
between the studied sites. However, this does not mean
that our sampling of clickstreams is lack of representa-
tiveness. Popular sites such as Google or Facebook may
receive clickstreams from many other sites, therefore the
degree distributions of the constructed networks are still
long-tail. Actually, we can regard the studied networks as
the “backbone” of the clickstreams on the entire web [23].
The detailed information of the three networks, including
the degree distribution, is given in the supplementary ma-
terial. In Figure 1, we plot w2 as an example. For visually
appealing we put sites of the same language together and
render them in the same color.

2.2 The definition of Ai, Ci, and γ

An example clickstream network (Fig. 2a) is given to illus-
trate the calculation of Ai, Ci, and γ. We balance the net-
work by adding two artificial nodes, “source” and “sink”,
to make sure that at each node the sum of inbound and
outbound streams are equal [25]. Suppose node i is im-
balanced, that means wij ≡ ∑n

j=1 fji −
∑n

j=1 fij �= 0. If
wij > 0, which means the influx to i is larger than the
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Fig. 2. (a) An example clickstream network and (b) the fittings
of γ in the example network. The red node denotes the values
of A2 and C2.

out flows from i, then we add a new edge from i to the
sink (n + 1) with flux |wij |. Otherwise, if wij < 0, then a
new edge from the source (0) to i with flux |wij | is added.
After that, we derive the matrix form of the balanced net-
work (F ′) and normalize this matrix by row to obtain the
transition matrix M (Eq. (1)), whose element mij denotes
users’ switch probability from site i to site j. Note that
there are n + 1 rows (columns) in M for we remove “sink”
by remain “source” in the network in order to make equa-
tion (4) true.

mij =
f ′

ij∑n+1
k=1 f ′

ik

, ∀i, j = 0, 1, . . . , n. (1)

We define Ai and Ci as follows:

Ai =
n+1∑

k=1

f ′
ik, ∀i = 1, 2, . . . , n, (2)

Ci = Gi

n∑

k=1

uik, ∀i = 1, 2, . . . , n. (3)

In equation (3), uij is the element of

U =
1

I − M
= I + M + M2 + · · · + M∞ (4)



Page 3 of 11

0 50 30 0 0

0 0 0 20 30

0 10 0 0 0

0 0 0 0 10

0 0 5 0 0

0 80 0 0 0 0 0

0 0 50 30 0 0 0

0 0 0 0 20 30 10

0 0 10 0 0 0 25

0 0 0 0 0 10 10

0 0 0 5 0 0 35

0 0 0 0 0 0 0

0 1 0 0 0 0

0 0
5

8

3

8
0 0

0 0 0 0
1

3

1

2

0 0
2

7
0 0 0

0 0 0 0 0
1

2

0 0 0
1

8
0 0

1 1
3

4

7

16

1

4

1

2

0 1
3

4

7

16

1

4

1

2

0 0
42

41

7

82

14

41

28

41

0 0
12

41

42

41

4

41

8

41

0 0
3

164

21

328

165

164

21

41

0 0
3

82

21

164

1

82

42

41

F F' M U

Fig. 3. Summary of the steps in deriving matrix U .

Table 1. The statistics of three studied clickstream networks.

Network Nsites Nedges Daily clickstreams γ R2 of γ

w1 979 11 906 5.45 × 109 0.95 0.98
w2 956 11 529 1.38 × 1010 0.92 0.95
w3 1189 17 061 6.06 × 109 0.96 0.99

Note: the daily clickstreams is obtained by summing up the
number of unique users over all edges in a clickstream network.

and Gi is defined as:

Gi =

∑n
j=1 f ′

0juji

uii
, (5)

where f ′
0j is the flow from “source” to j. Putting together

equations (4) and (5) Gi is total flow transported from
“source” to i [26,27] along all possible pathes (except the
looping flow on i). Basing on the data of the example
network, Figure 3 gives a summary of the calculations,
which enables us to examine the scaling relationship:

Ci ∼ Ai
γ , (6)

in which Ai is the traffic of site i and Ci reflects the circu-
lated clickstreams controlled by i in the network. As sug-
gested in references [25,28,29], we can examine the scaling
relationship between Ai and Ci. For example, Figure 1b
plots log(Ci) against log(Ai) in the example network, in
which the value of γ is estimated to be 1.45.

3 Results

3.1 The scaling of clickstreams

As shown in Figure 4, we find a scaling relationship Ci ∼
Ai

γ that is ubiquitous across the three studied networks.
The value of γ is estimated to be in the range of 0.92 ∼
0.96 (Tab. 1).

In Figure 4, we ignore the differences between users in
investigating the scaling property of the clickstream net-
works. However, this assumption is naive considering the
different preferences of users in navigation [6,7]. Therefore,
in the following part we try to control the linguistic vari-
ance, which may be one of the most significant differences
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Fig. 4. The scaling relationship between Ai and Ci in the three
clickstream networks. The data points from three networks are
plotted in different colors and styles: blue squares for w1, red
circles for w2, and green triangles for w3. The values of γ (black
line) were 0.95, 0.92, and 0.96, respectively. Please refer to Ta-
ble 1 for more information concerning the fitting of the scaling
relationship.

between users [16,30], in investigating the scaling prop-
erty. In particular, we divide the clickstream networks into
language-based website communities and then observe the
scaling pattern across these communities.

Using the AlchemyAPI (http://www.alchemyapi.
com/), we detect 16 language communities from w1, 17
from w2, and 50 from w3. In Table 2, we present the re-
sults of w2 as an example (the results of the rest two
networks are given in the supplementary material). The
communities given by Table 2, are less than those shown
in Figure 1, for several communities are too small to sup-
port an estimation of γ. As suggested by Table 2 and
Figure 5, in most of the communities there exists the rela-
tionship Ci ∼ Ai

γ(γ < 1), and the value of γ seems to be
invariant of community size. It means that these commu-
nities share the common decentralized structure with the
networks they belong to. This finding also implies that,
the linguistic variance between users does not affect the
universal scaling regularity in collective navigation [30].

3.2 The meaning of γ

The scaling relationship between Ci and Ai is interest-
ing at its own interest, but it is particularly inspiring to
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Table 2. The scaling exponent across language communities
in w2.

Community Nsites Nedges Daily clickstreams γ R2 of γ

English 516 6188 8.64 × 109 0.94 0.94
Chinese 214 2130 3.18 × 109 0.94 0.77
Japanese 63 481 4.83 × 108 0.86 0.88

Portuguese 31 115 4.48 × 107 0.91 0.83
French 25 57 1.12 × 107 0.84 0.57
Russian 21 94 8.50 × 107 0.97 0.94
German 15 64 1.78 × 107 0.91 0.76
Korean 11 53 6.11 × 107 0.98 0.84
Polish 10 43 1.72 × 107 1.05 0.91

Vietnamese 7 25 8.70 × 106 0.86 0.61
Thai 3 6 1.67 × 106 0.31 0.71

Note. The daily clickstreams is derived by summing up the
number of unique users over all edges in the clickstream

network.
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Fig. 5. The change of γ with community size N . Each data
point corresponds to a language community. The data points of
the three networks are plotted in blue squares (w1), red circles
(w2), and green triangles (w3), respectively.

consider the possible interpretations of γ. If we treat Ci

as an indicator of the total (both direct and indirect) im-
pact of site i on the rest of sites in clickstream circula-
tion [25,31], then γ measures the average increase of im-
pact with traffic. We can interpret γ as the level at which
large sites dominate the circulation of clickstreams [32].
For example, suppose we have two clickstream networks
of the same traffic distribution but are different in γ, Ai =
{1, 2, 3, 4, 5}, γ′ = 1/2, and γ′′ = 2. We can derive that
C′

i = {1, 1.4, 1.7, 2, 2.2} and C′′
i = {1, 4, 9, 16, 25}. The

impact of the largest node is 2.2 in the former network,
meaning that it controls (2.2/(1+ 1.4+ 1.7 +2.2)) ≈ 27%
circulated clickstreams. However, we can calculate that in
the latter network the largest node controls 45% circu-
lated clickstreams. Therefore, the latter network is more
heavily dominated by large sites. To conclude, γ < 1 im-
plies a decentralized flow structure, whereas γ > 1 is the
signature of a centralized flow structure. Our finding of
the γ < 1 in empirical clickstream networks uncovers the
decentralizing nature of collective attention, which is con-
sistent with the finding of reference [16].

3.3 The robustness of the scaling pattern against
network permutations

The necessity of the work presented in this section is
twofold. Firstly, to overcome the limitations of the cur-
rently used data sets. As Alexa only provides the top ten
inbound and outbound clickstreams for each site, we have
to ignore the rest, smaller clickstreams in the data anal-
ysis. If the discussed scaling pattern is sensitive to the
missing of the clickstreams, our conclusion would be bi-
ased. Secondly, by testing the robustness of the scaling
pattern against network permutations we obtain insight
into the mechanism responsible for the observed pattern.

We investigated the robustness of the scaling
relationship against two types of network permutations,
the selective removal of small clickstreams and the ran-
dom shuffling of connections. In both analysis, we used
four statistics to describe the scaling pattern, including
γ, R2, ρ, and D. γ and R2 are the fitted parameter and
the explained variance of the OLS regression of log(Ci)
on log(Ai), respectively. ρ is the Pearson correlation coef-
ficient between log(Ci/Ai) and log(Ai) [29] and D is the
Kolmogorov-Smirnov distance between Ci and Ai

γ . As γ
is close to 1, it is difficult to determine whether the ob-
serve scaling relationship is a trivial, linear dependence or
a significant, non-linear pattern. But by calculating ρ, we
are able to examine the non-linear nature of data, because
in log(Ci/Ai) we have removed the linear trend. In par-
ticular, ρ ≈ 0 if there is only linear relationship between
Ci and Ai, and ρ � 0 if Ci scales with Ai sublinearly. D
is often used, particulary, in cases concerning skewed dis-
tributions, to determine whether two data sets are from
the same population (the KS test) [33,34]. We calculate
D and compare it with 0.035, which is the expected value
of D under a confidence level equals 0.1 [34] and a sample
size equals 1200 [33]. If D < 0.035, the discussed scaling
relationship is validated.

In the first analysis, we gradually removed small click-
streams from the networks and observed the change of the
statistics [23]. We defined 0 ≤ α < 1 as the fraction of the
kept clickstreams for each site and remove all other click-
streams. Figure 6 shows that the scaling pattern is robust
against the removal of edges. The values of γ and R2 do
not fluctuate a lot as long as more than 30% edges are
kept (α = 0.2). During this process the robustness of the
scaling pattern is also evidenced by D < 0.035. According
to this result, we can predict the scaling pattern under the
condition that more clickstreams were collected: the value
of γ would be smaller and the fitting is likely to be better.

In the second analysis we randomly shuffle the click-
stream networks (in the eight different ways given by
Tab. 3) and then observe the robustness of the scaling
relationship.

The “randomly shuffled links” is different from the
“randomly connected links” in Table 3. The former keeps
the long-tail degree distribution of the original network,
but the latter leads to a ER random graph model of bino-
mial degree distribution [1]. Similarly, the “randomly shuf-
fled weights” is different from the “uniformly distributed
weights”, for we permute the order of weights and keep
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Table 3. The combinations in the reshuffling.

Ori weights Ran. shuffled weights Uni. distributed weights
Ori. links w1/w2/w3 a b

Ran. shuffled links c d e
Ran. connected links f g h

their long-tail distribution in the former, but create new,
uniformly distributed weights in the latter.

For each of the combinations listed in Table 3, we
ran 100 times of simulations and recorded the mean and
standard deviation of the aforementioned four statistics.
After that, we plotted γ vs. R2 and ρ vs. D (Fig. 7). In
Figure 7, the center of the disks indicates the mean values
and the radius reflects the standard deviations. We plot
the results of different combinations in distinct colors and
show the results of the empirical networks by “+” (w1),
“∗” (w2), and “×” (w3). It turned out that across the
three studied networks, the original networks always had
the smallest D and largest R2. We find that “randomly

connected links” usually leads to D > 0.035. Therefore, we
can conclude that the discussed scaling pattern is related
to the topological structure of the clickstream networks
rather than the distribution of weights on clickstreams.

4 Discussion

We study collective browsing behavior from a flow net-
work perspective. We define Ci as a measure of the im-
pact of websites i on other sites through users’ collec-
tive, continuous surfing activities and found it scaled to
website traffic Ai with an exponent smaller than 1. This
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pattern unrevealed the decentralized structure of the three
clickstream networks under study. Further, we found that
this scaling pattern appeared universally across language-
based communities with a γ independent of communities
size. Finally, we examined the stability of the scaling pat-
tern against the permutations of the clickstream networks.
It turned out that the scaling relationship was robust
against the selective removal of edges but sensitive to the
change of the linking structure.

Our finding has relevant theoretical and practical con-
sequences. Although the “rich-get-richer” paradigm has
been widely accepted as a mechanism of hyperlink forma-
tions since Barabási and Albert [13], we should not simply
assume that this paradigm also suits the dynamics of col-
lective surfing behavior [14,15]. It is already pointed out in
reference [16] that the traffic of websites scaled to its num-
ber of inbound links with an exponent approaching 0.8. In
this work we found the sublinear relationship between the
impact and the traffic. Puting these findings together, we
can conclude that the survival probability of small sites in
the web ecological system is actually higher than what was
suggested by their in-degree [13] or the Page Rank values
based on hyperlink structure [5,16]. Moreover, we would
like to emphasize that it is only by studying empirical
clickstream networks can these conclusions be achieved.

Finally, the found scaling relationship provide a quan-
titative prediction of the impact of a website from its traf-
fic. Online advertising usually measures the impact of web-
sites by their traffic [35,36], but our study offers a more
precise calculation of the impact of sites based on their
role in the circulation of clickstreams. Therefore, this ap-
proach has potential application in the estimation of the
value of sites and also the planning of online marketing
campaigns.

We acknowledge the support from the National Natural Science
Foundation of China under Grant No. 61004107.
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Supplementary Material

Clickstream network statistics

To construct clickstream networks we prepared three lists of seed site. For convenience we simply called these lists
“list1”, “list2”, and “list3”, and the constructed networks “w1”,“w2”, and “w3”. Table S1 provided the detailed
information of the three lists. The traffic distributions of sites in the lists are shown by Figure S1. From Figure S2 to
Figure S4, we showed several statistics, including degree, weights, and weighted degree of the clickstream networks.

Fig. S1. The traffic distributions of the seed sites. The y-axis is the traffic of sites (measured by the number of unique visitors)
and the x-axis denotes the decreasing rank of traffic. In list1 (blue squares) and list2 (red circles), we showed monthly traffic
of sites, as the top 1000 site provided by Google is monthly based; but in list3 (green triangles), we used daily traffic for Alexa
only offers daily traffic of websites. Both of the x- and y-axes are shown in the base-e log scale.

Table S1. The three lists of seed sites.

List Collected time Source Collected criterion Nsites Traffic range

list1 Oct., 2010 Google Top 1000 worldwide 1001 1.20 × 105 ∼ 8.98 × 108

list2 Jul., 2011 Google Top 1000 worldwide 1001 5.50 × 106 ∼ 9.00 × 108

list3 Apr., 2012 Alexa Top 25 in 124 countries(regions) 1198 6.13 × 103 ∼ 1.11 × 109

Note: the traffic of sites is measured in number of unique visitors.

Fig. S2. The degree distributions of the clickstream networks. The y-axis is the degree of nodes (triangle correspond to in-
degree and circles correspond to out-degree) and the x-axis denotes the decreasing rank of degree. Both axes are shown in the
base-e log scale. The out-degree of sites are plotted in circles (blue for w1, red for w2, and green for w3) and in-degree shown
in triangles (orange for w1, gray for w2, and purple for w3).
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Fig. S3. The distribution of weights in the clickstream networks. The y-axis is the weights of edges and the x-axis denotes the
decreasing rank of weights. Both axes are shown in the base-e log scale. The weights in w1, w2, and w3 are shown in blue, red,
and green circles, respectively.

Fig. S4. The weighted degree distributions of the clickstream networks. The y-axis is the weighted degree of nodes (triangles
correspond to in-degree and circles correspond to out-degree) and the x-axis denotes the decreasing rank of weighted degree.
Both axes are shown in the base-e log scale. The out-degree of sites are plotted in circles (blue for w1, red for w2, and green
for w3) and in-degree shown in triangles (orange for w1, gray for w2, and purple for w3).

Language community analysis

We placed, here, two tables showing the statistics of language communities in w1 and w3.

Table S2. The quantities of interest across language communities in w1.

Community Nsites Nedges Daily clickstreams γ R2 of γ

English 518 5893 3.74 × 109 0.97 0.92
Chinese 208 1987 7.72 × 108 0.93 0.85
Japanese 99 924 2.39 × 108 0.94 0.93
German 30 135 1.20 × 107 0.87 0.88
Russian 28 163 5.46 × 107 1.05 0.87
Korean 27 225 1.21 × 107 0.96 0.89
French 27 72 3.39 × 106 0.94 0.82
Italian 10 25 3.61 × 106 1.19 0.85

Portuguese 9 36 8.54 × 106 0.89 0.92
Vietnamese 7 28 1.80 × 106 0.94 0.93

Polish 5 16 3.55 × 106 0.82 0.88
Thai 3 6 3.12 × 105 0.50 0.99

Note: the daily clickstreams is obtained by summing up the number of users over all edges within a community.
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Table S3. The quantities of interest across language communities in w3.

Community Nsites Nedges Daily clickstreams γ R2 of γ

English 339 4157 3.62 × 109 0.99 0.97
Arabic 116 700 2.71 × 107 0.94 0.96
Spanish 112 535 4.27 × 107 0.99 0.97
Russian 66 393 9.11 × 107 1.00 0.97
French 63 254 3.55 × 107 1.02 0.98
Chinese 50 349 5.90 × 108 1.29 0.93
Croatian 33 188 3.79 × 106 1.10 0.93
German 30 192 5.25 × 107 1.00 0.97
Czech 26 177 1.90 × 107 1.01 0.83

Persian 21 78 4.81 × 106 0.98 0.91
Romanian 19 86 4.83 × 106 1.13 0.91

Polish 18 141 2.85 × 107 0.95 0.93
Japanese 18 137 1.65 × 108 1.04 0.94
Hungarian 17 103 7.36 × 106 0.94 0.94

Greek 17 84 4.45 × 106 1.13 0.96
Turkish 16 77 1.88 × 107 0.97 0.98
Dutch 16 83 1.09 × 107 0.98 0.94

Portuguese 14 64 2.50 × 107 0.95 0.97
Macedonian 14 67 1.72 × 105 0.83 0.68
Lithuanian 14 61 6.18 × 105 1.09 0.80
Vietnamese 13 41 2.68 × 106 0.91 0.75

Italian 13 63 2.78 × 107 0.95 0.95
Finnish 13 83 5.35 × 106 0.91 0.94

Norwegian 12 81 5.75 × 106 0.87 0.86
Estonian 11 61 9.45 × 105 0.96 0.85
Icelandic 10 59 5.18 × 105 1.03 0.96
Latvian 9 52 1.30 × 106 0.93 0.93
Hebrew 9 46 2.52 × 106 1.00 0.94
Danish 9 49 3.37 × 106 0.91 0.97

Bulgarian 9 36 5.86 × 105 0.78 0.82
Albanian 8 42 2.61 × 105 0.86 0.88

Thai 7 23 9.42 × 105 0.82 0.34
Georgian 7 13 9.93 × 104 0.96 1.00

Azerbaijani 6 14 1.30 × 105 0.95 1.00
Slovenian 5 11 1.07 × 105 1.08 0.71
Korean 5 16 3.88 × 106 0.92 0.82
Slovak 3 4 9.83 × 104 0.50 0.89

Note: the daily clickstreams is obtained by summing up the number of users over all edges within a community.
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The example results of the backbone network analysis
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Fig. S5. The example steps in the skeleton analysis applied on w1. The blue, green, yellow, and red points correspond to nodes
within the backbone networks when α = 0.8, α = 0.6, α = 0.4, and α = 0.2, respectively. Both of the x- and y-axes in the four
figures are shown in the base-e log scale.
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The example results of the reshuffling analysis
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Fig. S6. The example results of the eight combinations in the shuffling analysis applied on w1. The data points of different
combinations are shown in distinct colors. Both of the x- and y-axes in the eight figures are shown in the base-e log scale.


