https://doi.org/10.1140/epjc/s10052-025-14069-1
Regular Article - Theoretical Physics
Detect anomalous quartic gauge couplings at muon colliders with quantum kernel k-means
1
Department of Physics, Liaoning Normal University, 116029, Dalian, China
2
Center for Theoretical and Experimental High Energy Physics, Liaoning Normal University, 116029, Dalian, China
Received:
23
December
2024
Accepted:
9
March
2025
Published online:
2
April
2025
In recent years, with the increasing luminosities of colliders, handling the growing amount of data has become a major challenge for future New Physics (NP) phenomenological research. In order to improve efficiency, machine learning algorithms have been introduced into the field of high-energy physics. As a machine learning algorithm, kernel k-means has been demonstrated to be useful for searching NP signals. It is well known that the kernel k-means algorithm can be carried out with the help of quantum computing, which suggests that quantum kernel k-means (QKKM) is also a potential tool for NP phenomenological studies in the future. This paper investigates how to search for NP signals using QKKM. Taking the process at a muon collider as an example, the dimension-8 operators contributing to anomalous quartic gauge couplings (aQGCs) are studied. The expected coefficient constraints obtained using the QKKM of three different forms of quantum kernels, as well as the constraints obtained by the classical k-means algorithm are presented, and it can be shown that QKKM can help to find the signal of aQGCs. Comparing the classical k-means anomaly detection algorithm with QKKM, it is indicated that the QKKM is able to archive a better cut efficiency.
© The Author(s) 2025
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3.