https://doi.org/10.1140/epjc/s10052-025-14064-6
Regular Article - Theoretical Physics
Scalar dark matter production through the bubble expansion mechanism: the role of the Lorentz factor and non-renormalizable interactions
Departamento de Física Teórica and Instituto de Física de Partículas y del Cosmos (IPARCOS-UCM), Facultad de Ciencias Físicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
Received:
11
December
2024
Accepted:
12
March
2025
Published online:
1
April
2025
We consider a Bubble Expansion mechanism for the production of scalar dark matter during a first-order phase transition in the very early Universe. Seeking for a dark matter energy density in agreement with observations, we study different renormalizable and non-renormalizable interactions between the dark matter species and the field undergoing the transition, considering all possible regimes for the Lorentz boost factor associated with the motion of the bubble wall. By employing a combination of analytical and numerical techniques, we demonstrate that sufficient dark matter production is achievable even in the previously unexplored low-velocity bubble expansion regime, enlarging the parameter space and possibilities of the scenario. Notably, for the non-renormalizable interactions it is found that the produced dark matter abundances exhibit a similar qualitative behavior to the renormalizable case, even for low Lorentz boost factors. Furthermore, for a transition around the electroweak scale, the associated gravitational wave spectrum is within the reach of future detectors.
© The Author(s) 2025
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3.