https://doi.org/10.1140/epjc/s10052-022-10451-5
Regular Article - Theoretical Physics
Rotating black holes in Horndeski gravity: thermodynamic and gravitational lensing
1
Astrophysics Research Centre, School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Private Bag 54001, 4000, Durban, South Africa
2
Centre for Theoretical Physics, Jamia Millia Islamia, 110025, New Delhi, India
Received:
9
February
2022
Accepted:
19
May
2022
Published online:
22
June
2022
The lack of rotating black holes, typically found in nature, hinders testing modified gravity from astrophysical observations. We present the axially symmetric counterpart of an existing spherical hairy black hole in Horndeski gravity having additional deviation parameter Q, which encompasses the Kerr black hole as a particular case (). We investigate the effect of Horndeski parameter Q on the rotating black holes geometry and analytically deduce the gravitational deflection angle of light in the weak-field limit. For the S2 source star, the deflection angle for the Sgr A* model of rotating Horndeski gravity black hole for both prograde and retrograde photons is larger than the Kerr black hole values. We show how parameter Q could be constrained by the astrophysical implications of the lensing by this object. The thermodynamic quantities, Komar mass, and Komar angular momentum gets corrected by the parameter Q, but the Smarr relation still holds at the event horizon.
© The Author(s) 2022
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3